MINISTRY OF EDUCATION AND SCIENCE, YOUTH AND SPORTS OF UKRAINE

 STATE HIGHER EDUCATIONAL INSTITUTION

 STATE HIGHER EDUCATIONAL INSTITUTION «NATIONAL MINING UNIVERSITY»

A.M. Dolgov

THEORETICAL MECHANICS DYNAMICS

Tutorial

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД «НАЦІОНАЛЬНИЙ ГІРНИЧИЙ УНІВЕРСИТЕТ»

О.М. Долгов
\title{ ТЕОРЕТИЧНА МЕХАНІКА ДИНАМІКА }

Навчальний посібник

> Рекомендовано редакиійною радою ДВНЗ «Національний гірничий університет» як навчальний посібник для студентів напряму підготовки 050702 Електромеханіка (протокол № 2 від 25.06.12).

Рецензенти:

B.В. Лобода, д-р фіз.-мат. наук, професор, завідувач кафедри теоретичної та прикладної механіки (Дніпропетровський національний університет);
B.I. Самуся, д-р техн. наук, професор, завідувач кафедри гірничої механіки (Державний вищий навчальний заклад «Національний гірничий університет»).

Dolgov, A.M.

Д64 Theoretical Mechanics. Dynamics [Text]: tutorial / A.M. Dolgov. - D.: National mining university, 2012. - 160 p.

Contents of this tutorial correspond to the bachelors' educational and professional program in Electromechanics, particularly, to the subject of Theoretical Mechanics. Notions of particle and system dynamics are considered. Examples of practical problem solutions and tasks for self-study training, which define bachelor's knowledge and abilities in Electromechanics, are represented.

Зміст навчального посібника відповідає освітньо-професійній програмі підготовки бакалаврів з напряму «Електромеханіка», зокрема - дисципліні «Теоретична механіка». Розглянуто питання динаміки матеріальної точки і механічної системи. Наведено приклади розв’язування практичних задач і сформульовано завдання для самостійної роботи, які окреслюють навички та уміння бакалавра напряму «Електромеханіка».

CONTENTS

PREFACE 7
INTRODUCTION 8

1. LAWS AND PROBLEMS OF DYNAMICS 10
1.1. Basic Concepts and Definitions. 10
1.2. The Laws of Dynamics 11
1.3. The Problems of Dynamics for a Free and a Constrained Particle 12
1.4. Solution of Problems 13
2. DIFFERENTIAL EQUATIONS OF MOTION FOR A PARTICLE AND THEIR INTEGRATION 14
2.1. Rectilinear Motion of a Particle 14
2.2. Curvilinear Motion of a Particle 17
2.3. Motion of a Particle Thrown at an Angle to the Horizon in a Uniform Gravitational Field 17
2.4. Solution of Problems 19
3. VIBRATION OF A PARTICLE 23
3.1. Free Harmonic Motion. 23
3.2. Damped Vibration 25
3.3. Damped Forced Vibrations. Resonance 27
3.4. Solution of Problems 30
4. INTRODUCTION TO THE DYNAMICS OF A SYSTEM. 32
4.1. Mechanical Systems. External and Internal Forces 32
4.2. Mass of a System. Centre of Mass 33
4.3. Moment of Inertia of a Body about an Axis. Radius of Gyration 34
4.4. Moments of Inertia of Some Homogeneous Bodies 34
4.5. Moments of Inertia of a Body about Parallel Axes. The Parallel-Axis. (Huygens')Theorem. 36
4.6. The Differential Equations of Motion of a System. 37
5. GENERAL THEOREMS OF DYNAMICS 38
5.1. Momentum of a Particle and a System. 38
5.2. Impulse of a Force 39
5.3. Theorem of the Motion of Center of Mass 40
5.4. The Law of Conservation of Motion of Center of Mass 41
5.5. Theorem of the Change in the Momentum of a Particle 41
5.6. Theorem of the Change in Linear Momentum of the System. 42
5.7. The Law of Conservation of Linear Momentum 43
5.8. Theorem of the Change in the Angular Momentum of a Particle 43
5.9. Total Angular Momentum of a System 45
5.10. Theorem of the Change in the Total Angular Momentum of a System. 46
5.11. The Law of Conservation of the Total Angular Momentum 46
5.12. Kinetic Energy of Particle and a System 47
5.13. Work Done by a Force. Power. 48
5.14. Examples of Calculation of Work 49
5.15. Theorem of the Change in the Kinetic Energy of a Particle 52
5.16. Theorem of the Change in the Kinetic Energy of a System 53
5.17. Solution of Problems 54
6. THE PRINCIPLES OF DYNAMICS 78
6.1. D'Alembert's Principle for a Particle and a System. 78
6.2. The Principal Vector and the Principal Moment of the Inertia Forces of a Rigid Body 79
6.3. Virtual Displacements of a System. Degrees of Freedom 80
6.4. The Principle of Virtual Work. 82
6.5. The General Equation of Dynamics 83
6.6. Solution of Problems 83
7. LAGRANGIAN DYNAMICS 96
7.1. Generalized Coordinates, Velocities and Accelerations. 96
7.2. Generalized Forces 97
7.3. Conditions of Equilibrium in Terms of Generalized Coordinates. 98
7.4. Lagrange's Equations of Motion. 99
7.5. Solution of Problems 100
8. PROBLEMS FOR SELF-STUDY TRAINING 108
8.1. Integration of Differential Equations of the Particle Motion under the Action of Constant Forces 108
8.2. Application of the Theorem of the Change in Kinetic Energy to Study of the Motion of a System 113
8.3. Application of Virtual Work Principle to the Static Problems. 124
8.4. Application of General Equation of Dynamics to Study of Motion of Mechanical System with One Degree of Freedom 132
8.5. Research of Free Vibrations of Mechanical Systems with One Degree of Freedom 139
8.6. Application of the Lagrange's Equations to Research of Motion of Mechanical System with Two Degrees of Freedom. 147
REFERENCES 156
SUBJECT INDEX 157

PREFACE

The primary object of Dynamics to be gained by the student is a thorough grasp of fundamental principles. In most cases it is impossible to go beyond this object in the time available for the course. In the preparation of this textbook, the aim has been to present the fundamental principles in as clear and simple a manner as possible, and to enforce them by a sufficient number of illustrative examples.

The study of Dynamics, as presented in this manual, is founded upon a course in Statics and Kinematics. It is assumed, moreover, that the students have already become familiar with the fundamental ideas of force, energy and work through such preliminary courses of General Physics. The mathematical training required for using the book is that usually implied by an elementary knowledge of Differential and Integral Calculus.

In short, this textbook presents the subject of Dynamics in that relation to other subjects which have become established in the curricula of the technical universities. It should be emphasized, however, that the manual includes, for purposes of review, a discussion of the fundamental notions and many problems involving these notions. Attention may be called to the arrangement in the text. This arrangement is founded upon experience in teaching the subject for many years in the National Mining University of Ukraine. This manual is based on a Short Course of Theoretical Mechanics by S.M. Targ (Foreign Languages Publishing House, Moscow) [1] and prepared for foreign students and for those who study some subjects of the curricula in English.

The opinion is sometimes expressed that the needs of different classes of students require essentially different methods of treating the subject. This view, so far as it refers to the fundamental parts of an elementary course of Dynamics, is not shared by the author of this textbook. For all students, the matter of first importance is the clear understanding of fundamental general principles and the ability to apply them. That is why there are included in the text some of problems suggested for independent work on the course. These problems are taken from [2]. They were chosen with an eye to ensure a clear comprehension of the dynamical phenomena, and they embrace all the main methods of Dynamics. In order to assist the students’ work the examples of the problem solutions contain the relevant instructions.

The author hopes that this manual may be useful to students of technical specialties interested in advancing their knowledge of Dynamics. If this book is in any degree successful in meeting the needs of students of engineering, it is hoped that it may be of service also to those pursuing the subject for its intrinsic scientific interest or as a preparation for the study of other engineering disciplines.

The author should be greatly obliged to those who may make use of the book if they would point out any defects or obscurities in the text or would offer suggestions for its improvement.

INTRODUCTION

This text is intended for the first course in the study of Theoretical Mechanics, and its part, Dynamics, usually taken by engineering students in the sophomore or junior year. It is assumed that the student has completed the basic courses in physics, calculus, statics, and kinematics.

The purpose of the study of Dynamics is twofold. First, students must be introduced to the basic ideas and concepts used in the area of Dynamics. This includes a thorough treatment of the basic ideas of mass, acceleration, force, energy, work, mechanical system, measures of mechanical interaction and motion, differential equations of motion, and so on. These ideas are emphasized and kept in focus throughout this text, with careful study of how their combination leads to specific theories about motion of material bodies.

Second, students need ample practice in applying these theories to practical situations. Relatively simple problems are examined in this text to analyze motion. Both of these goals require continual awareness of all the notions that are necessary parts of Dynamics, to understand and avoid situations where application of theory is unwarranted.

A traditionally difficult aspect of developing a Dynamics text has been in striking a balance between theory and the many practical applications that are important to students who will go on to use the knowledge in actual practice.

A major goal is to keep the basic ideas clearly in focus when developing theory or applying the results of the theory to actual situations. In experience, a careful separate treatment of each of the basic ideas provides an excellent framework for the study of elementary theories in Dynamics.

Section 1 presents an overview of the typical areas of application of Dynamics. The three basic ideas of Dynamics, force, mass, and acceleration, are introduced. The laws and problems of Dynamics are formulated.

The main goal of Dynamics can be stated roughly as follows. Given the loads applied to the body, what is the law of its motion? Discussions in Section 2 involve using differential equations of particle motion to determine its law of motion.

Section 3 is devoted to the study of characteristic features of motion, i.e., vibrations. The main notions and conclusions are discussed in detail. The phenomenon of resonance is considered.

Section 4 has auxiliary character for the study of System Dynamics. Some of important concepts are introduced and discussed.

So called general theorems of Dynamics for particle and mechanical system are covered in Section 5. In order to consider these theorems, many concepts are introduced. Using theorems solves the basic problem of Dynamics without integrating differential equations of motion in many practical applications.

Some elements of Analytical Mechanics are considered in Section 6. This Section studies principles of Dynamics which represent general approach to the dynamic and static problems.

Section 7 deals with Lagrangian techniques for developing differential equations of motion for mechanical system. The advantages' of Lagrange's equations are demonstrated in detail. Very likely, this Section is the most important from the practical point of view.

All Sections except Section 4 contain examples of problems solution.
There are problems for self-instruction with examples of their solution in Section 8. These, more challenging problems, are intended to assist the students in understanding and applying the basic ideas.

1. LAWS AND PROBLEMS OF DYNAMICS

1.1. Basic Concepts and Definitions

Dynamics is that section of mechanics which treats of the laws of motion of material bodies subjected to the action of forces.

The motion of bodies from a purely geometrical point of view is discussed in kinematics. Unlike kinematics, in dynamics the motion of bodies is investigated in connection with the acting forces and the inertia of the material bodies themselves.

The concept of force as a quantity characterizing the measure of mechanical interaction of material bodies is introduced in the course of statics. But in statics we treat all forces as constant without considering the possibility of their changing with time. In real systems, though, alongside of constant forces a body is often subjected to the action of variable forces whose magnitudes and directions change when the body moves. Variable forces may be both applied (active) forces and the reactions of constraints.

Experience shows that variable forces may depend in some specific ways on time, on the position of a body, or on its velocity (examples of dependence on time are furnished by the tractive force of an electric locomotive whose rheostat is gradually switched on or off, or the force causing the vibration of a foundation of a motor with a poorly centered shaft; the Newtonian force of gravitation or the elastic force of a spring depend on the position of a body; the resistance experienced by a body moving through air or water depends on the velocity). In dynamics we shall deal with such forces alongside of constant forces. The laws for the composition and resolution of variable forces are the same as for constant forces.

The concept of inertia of bodies arises when we compare the results of the action of an identical force on different material bodies. Experience shows that if the same force is applied to two different bodies initially at rest and free from any other actions, in the most general case the bodies will travel different distances and acquire different velocities in the same interval of time.

Inertia is the property of material bodies to resist a change in their velocity under the action of applied forces. If, for example, the velocity of one body changes slower than that of another body subjected to the same force, the former is said to have greater inertia, and vice-versa. The inertia of a body depends on the amount of matter it contains.

The quantitative measure of the inertia of body, which depends on the quantity of matter in the body, is called the mass of that body. In mechanics mass m is treated as a scalar quantity which is positive and constant for body. The measurement of mass will be discussed in the following article.

In the most general case the motion of a body depends not only on its aggregate mass and the applied forces, the nature of motion may also depend on the dimensions
of the body and the mutual position of its particles (i.e., on the distribution of its mass).

In the initial course of dynamics, in order to neglect the influence of the dimensions and the distribution of the mass of a body, the concept of a material point, or particle, is introduced.

A particle is a material body (a body possessing mass) the size of which can be neglected in investigating its motion.

Actually any body can be treated as a particle when the distances traveled by its points are very great as compared with the size of the body itself. Furthermore, as will be shown in the dynamics of systems, a body in translational motion can always be considered as a particle of mass equal to the mass of the whole body.

Finally, the parts into which we shall mentally divide bodies in analyzing any of their dynamic characteristics can also be treated as material points.

Obviously, the investigation of the motion of a single particle should precede the investigation of systems of particles, and in particular of rigid bodies. Accordingly, the course of dynamics is conventionally subdivided into particle dynamics and the dynamics of systems of particles.

1.2. The Laws of Dynamics

The study of dynamics is based on a number of laws generalizing the results of a wide range of experiments and observations of the motions of bodies, i.e., laws that have been verified in the long course of human history.

The First Law (the Inertia Law): a particle free from any external influences continues in its state of rest, or of uniform rectilinear motion, except in so far as it is compelled to change that state by impressed forces.

The motion of a body not subjected to any force is called motion under no forces, or inertial motion.

The inertia law states one of the basic properties of matter: that of being always in motion. It establishes the equivalence, for material bodies, of the states of rest and of motion under no forces.

A frame of reference for which the inertia law is valid is called an inertial system (or, conventionally, a fixed system). Experience shows that, for our solar system, an inertial frame of reference has its origin in the center of the sun and its axes are pointed towards the so-called "fixed" stars. In solving most engineering problems a sufficient degree of accuracy is obtained by assuming any frame of reference connected with the earth to be an inertial system.

The Second Law (the Fundamental Law of Dynamics) establishes the mode in which the velocity of a particle changes under the action of a force. It states: the product of the mass of a particle and the acceleration imparted to it by a force is proportional to the acting force; the acceleration takes place in the direction of the force.

Mathematically this law is expressed by the vector equation:

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{F} . \tag{1.1}
\end{equation*}
$$

The second law of dynamics, like the first, is valid only for an inertial system. It can be immediately seen from the law that the measure of the inertia of a particle is its mass, since two different particles subjected to the action of the same force receive the same acceleration only if their masses are equal; if their masses are different, the particle with the larger mass (i.e., the more inert one) will receive a smaller acceleration, and vice-versa.

A set of forces acting on a particle can, as we know, be replaced by a single resultant R equal to the geometrical sum of those forces. In this case the equation expressing the fundamental law of dynamics acquires the form

$$
\begin{equation*}
m \boldsymbol{a}=\boldsymbol{R} \text { or } m \boldsymbol{a}=\sum \boldsymbol{F}_{k} . \tag{1.2}
\end{equation*}
$$

Measure of mass. Eq. (1.2) makes it possible to determine the mass of a body if its acceleration in translational motion and the acting force are known. It has been established experimentally that under the action of the force of gravitation P all bodies falling to the earth (from a small height and in vacuum) possess the same acceleration g, this is known as the acceleration of gravity or of free fall. Applying Eq. (1.2) to this motion, we obtain $m g=P$, whence

$$
\begin{equation*}
m=\frac{P}{g} . \tag{1.3}
\end{equation*}
$$

Thus, the mass of a body is equal to its weight divided by the acceleration of gravity g.

The Third Law (the Law of Action and Reaction) establishes the character of mechanical interaction between material bodies. For two particles it states: two particles exert on each other forces equal in magnitude and acting in opposite directions along the straight line connecting the two particles.

It should be noted that the forces of interaction between free particles (or bodies) do not form a balanced system, as they act on different objects.

The third law of dynamics, which establishes the character of interaction of material particles, plays an important part in the dynamics of systems.

1.3. The Problems of Dynamics for a Free and a Constrained Particle

The problems of dynamics for a free particle are: 1) knowing the equation of motion of a particle, to determine the force acting on it (the first problem of dynamics); 2) knowing the forces acting on a particle, to determine its equation of motion (the second, or principal, problem of dynamics).

Both problems are solved with the help of Eq. (1.1) or (1.2), which expresses the fundamental law of dynamics, since they give the relation between acceleration, i.e., the quantity characterizing the motion of a particle, and the forces acting on it.

In engineering it is often necessary to investigate constrained motions of a particle, i.e., cases when constraints attached to a particle compel it to move along a given fixed surface or curve.

In such cases we shall use, as in statics, the axiom of constraints, which states that any constrained particle can be treated as a free body detached from its
constraints provided the latter is represented by their reactions N. Then the fundamental law of dynamics for the constrained motion of a particle takes the form

$$
\begin{equation*}
m \boldsymbol{a}=\sum \boldsymbol{F}_{k}^{a}+\boldsymbol{N}, \tag{1.4}
\end{equation*}
$$

where \boldsymbol{F}_{k}^{a} denotes the applied forces acting on the particle.
For constrained motion the first problem of dynamics will usually be: to determine the reactions of the constraints acting on a particle if the motion and applied forces are known. The second (principal) problem of dynamics for such motion will pose two questions: knowing the applied forces, to determine: a) the equation of motion of the particle and b) the reaction of its constraints.

1.4. Solution of Problems

Problem 1. A balloon of weight P descends with acceleration a. What weight (ballast) Q must be thrown overboard in order to give the balloon an equal upward acceleration?

Solution. The forces acting on the falling balloon are its weight \boldsymbol{P} and the buoyancy force \boldsymbol{F} (Fig. 1). Hence, from Eq. (1.2)

$$
\frac{P}{g} a=P-F .
$$

After the ballast has been thrown out (Fig. 1), the weight of the balloon becomes $P-Q$, the buoyancy force remaining the same. Hence, taking into account that now the balloon is rising, we have

$$
\frac{P-Q}{g} a=F-(P-Q) .
$$

Eliminating the unknown force F from the equations, we obtain

$$
Q=\frac{2 P}{1+\frac{g}{a}} .
$$

Problem 2. A lift of weight P (Fig. 2) starts ascending with acceleration a. Determine the tension in the cable.

Solution. Considering the lift as a free body, replace the action of the constraint

Fig. 2
(the cable) by its reaction \boldsymbol{T}. From Eq. (1.4) we obtain

$$
\frac{P}{g} a=T-P,
$$

whence

$$
T=P\left(1+\frac{a}{g}\right) .
$$

If the lift starts descending with the same acceleration, the tension in the cable will be

$$
T=P\left(1-\frac{a}{g}\right) .
$$

Problem 3. The radius of curvature of a bridge at point A is R (Fig. 3). Determine the pressure exerted on the bridge at A by a motor car of weight P moving with a velocity v.

Solution. The normal acceleration of the car at point A is

$$
a_{n}=\frac{v^{2}}{R} .
$$

Fig. 3

Acting on it are the force of gravity \boldsymbol{P} and the reaction of constraint \boldsymbol{N}. Then, from Eq. (1.4),

$$
\begin{aligned}
\frac{P}{g} \frac{v^{2}}{R} & =P-N, \\
N & =P\left(1-\frac{v^{2}}{g R}\right) .
\end{aligned}
$$

The pressure on the bridge is equal to \boldsymbol{N} in magnitude but is directed downward.

Problem 4. A crank of length l (Fig. 4) rotates with a uniform angular velocity ω and translates the slotted bar K of weight P along slides 1,1 . Neglecting friction, determine the pressure exerted by the slide block A on the slotted bar.

Solution. The position of the bar is specified by its coordinate $x=l \cos \omega t$. Eq. (1.4) for the motion of the bar in terms of its projection on x axis gives $m a_{x}=Q_{x}$. But

$$
a_{x}=\frac{d^{2} x}{d t^{2}}=-l \omega^{2} \cos \omega t=-\omega^{2} x
$$

whence, as $Q_{x}=-Q,-\frac{P}{g} \omega^{2} x=-Q, \quad Q=\frac{P}{g} \omega^{2} x$.
Thus, the pressure of the slide block on the slotted bar is

Fig. 4 proportional to its coordinate x.

2. DIFFERENTIAL EQUATIONS OF MOTION FOR A PARTICLE AND THEIR INTEGRATION

2.1. Rectilinear Motion of a Particle

We know from kinematics that in rectilinear motion the velocity and acceleration of a particle are continuously directed along the same straight line. As the direction of acceleration is coincident with the direction of force, it follows that a free particle will move in a straight line whenever the force acting on it is of constant direction and the velocity at the initial moment is either zero or is collinear with the force.

Consider a particle moving rectilinearly under the action of an applied force $\boldsymbol{R}=\sum \boldsymbol{F}_{k}$. The position of the particle on its

Fig. 5 path is specified by its coordinate x (Fig. 5). In this case the principal problem of dynamics is: knowing \boldsymbol{R}, to find the equation of motion of the particle $x=f(x)$. Eq. (1.2) gives the relation between x and \boldsymbol{R}. Projecting both sides of the equation on axis $O x$, we obtain

$$
\begin{gather*}
m a_{x}=R_{x}=\sum F_{k x} \text { or as } a_{x}=\frac{d^{2} x}{d t^{2}} \\
m \frac{d^{2} x}{d t^{2}}=\sum F_{k x} \tag{2.1}
\end{gather*}
$$

Eq. (2.1) is called the differential equation of rectilinear motion of a particle. It is often more convenient to replace Eq. (2.1) with two differential equations containing first derivatives:

$$
\begin{align*}
m \frac{d v_{x}}{d t} & =\sum F_{k x} \tag{2.2}\\
\frac{d x}{d t} & =v_{x} \tag{2.2'}
\end{align*}
$$

Whenever the solution of a problem requires that the velocity be found as a function of the coordinate x instead of time t (or when the forces themselves depend on x), Eq. (2.2') is converted to the variables x. As $\frac{d v_{x}}{d t}=\frac{d v_{x}}{d x} \times \frac{d x}{d t}=\frac{d v_{x}}{d x} v_{x}$ Eq. (2.2) takes the form

$$
\begin{equation*}
m v_{x} \frac{d v_{x}}{d x}=\sum F_{k x} \tag{2.3}
\end{equation*}
$$

The principal problem of dynamics is, essentially, to develop the equation of motion $x=f(t)$ for a particle from the above equations, the forces being known. For this it is necessary to integrate the corresponding differential equation. In order to make clearer the nature of the mathematical problem, it should be recalled that the forces in the right side of Eq. (2.1) can depend on time t, on the position of the particle x, or on the velocity $v_{x}=\frac{d x}{d t}$. Consequently, in the general case Eq. (2.1) is, mathematically, a differential equation of the second order in the form

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\Phi\left(t, x, \frac{d x}{d t}\right) . \tag{2.4}
\end{equation*}
$$

The equation can be solved for every specific problem after determining the form of its right-hand member, which depends on the applied forces. When Eq. (2.4) is integrated for a given problem, the general solution will include two constants of integration C_{1} and C_{2} and the general form of the solution will be

$$
\begin{equation*}
x=f\left(t, C_{1}, C_{2}\right) \tag{2.5}
\end{equation*}
$$

To solve a concrete problem, it is necessary to determine the values of the constants C_{1} and C_{2}. For this we introduce the so-called initial conditions.

Investigation of any motion begins from some specified instant called the initial time $t=0$, usually the moment when the motion under the action of the given forces starts. The position occupied by a particle at the initial time is called its initial displacement, and its velocity at that time is its initial velocity (a particle can have an initial velocity either because at time $t=0$ it was moving under no force or because up to time $t=0$ it was subjected to the action of some other forces). To solve the principal problem of dynamics we must know, besides the applied forces, the initial conditions, i.e., the position and velocity of the particle at the initial time.

In the case of rectilinear motion, the initial conditions are specified in the form

$$
\begin{equation*}
\text { at } t=0, x=x_{0}, v_{x}=v_{0} \text {. } \tag{2.6}
\end{equation*}
$$

From the initial conditions we can determine the meaning of the constants C_{l} and C_{2}, and develop finally the equation of motion for the particle in the form

$$
\begin{equation*}
x=f\left(t, x_{0}, v_{o}\right) . \tag{2.7}
\end{equation*}
$$

The following simple example will explain the above. Let there be acting on a particle a force \boldsymbol{Q} of constant magnitude and direction. Then Eq. (2.2) acquires the form

$$
m \frac{d v_{x}}{d t}=Q_{x}
$$

As $Q_{x}=$ const., multiplying both members of the equation by $d t$ and integrating, we obtain

$$
\begin{equation*}
v_{x}=\frac{Q_{x}}{m} t+C_{1} . \tag{2.8}
\end{equation*}
$$

Substituting the value of v_{x} into Eq. (2.2'), we have

$$
\frac{d x}{d t}=\frac{Q_{x}}{m} t+C_{1} .
$$

Multiplying through by $d t$ and integrating once again, we obtain

$$
\begin{equation*}
x=\frac{1}{2} \frac{Q_{x}}{m} t^{2}+C_{1} t+C_{2} . \tag{2.9}
\end{equation*}
$$

This is the general solution of Eq. (2.4) for the specific problem in the form given by Eq. (2.5).

Now let us determine the integration constants C_{1} and C_{2}, assuming for the specific problem the initial conditions given by (2.6). Solutions (2.8) and (2.9) must satisfy any moment of time, including $t=0$. Therefore, substituting zero for t in Eqs. (2.8) and (2.9), we should obtain v_{0} and x_{o}, instead of v_{x} and x, i.e., we should have $v_{0}=C_{1}, \quad x_{o}=C_{2}$.

These equations give the values of the constants C_{1} and C_{2}, which satisfy the initial conditions of a given problem. Substituting these values into Eq. (2.9), we obtain finally the relevant equation of motion in the form expressed by Eq. (2.7):

$$
\begin{equation*}
x=\frac{1}{2} \frac{Q_{x}}{m} t^{2}+v_{0} t+x_{0} . \tag{2.10}
\end{equation*}
$$

We see from Eq. (2.10) that a particle subjected to a constant force performs uniformly variable motion. This could have been foreseen; for, if $\boldsymbol{Q}=$ const., $\boldsymbol{a}=$ const., too. An example of this type of motion is the motion of a particle under
the force of gravity, in which case in Eq. (2.10) $\frac{Q_{x}}{m}=g$ and axis $O x$ is directed vertically down.

2.2. Curvilinear Motion of a Particle

Consider a free particle moving under the action of forces $\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}$. Let us draw a fixed set of axes $O x y z$ (Fig. 6). Projecting both members of the equation (1.2) on these axes, and taking into account that $a_{x}=\frac{d^{2} x}{d t^{2}}, a_{y}=\frac{d^{2} y}{d t^{2}}, a_{z}=\frac{d^{2} z}{d t^{2}} \quad$ we obtain the differential equations of curvilinear motion of a body in terms of the projections on rectangular Cartesian axes:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=\sum F_{k x}, m \frac{d^{2} y}{d t^{2}}=\sum F_{k y}, m \frac{d^{2} z}{d t^{2}}=\sum F_{k z} . \tag{2.11}
\end{equation*}
$$

Fig. 6

As the forces acting on the particle may depend on time, the displacement or the velocity of the particle, then by analogy with Eq. (2.4), the right-hand members of Eqs. (2.11) may contain the time t, the coordinates x, y, z of the particle, and the projections of its velocity $\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}$. Furthermore, the right side of each equation may include all these variables.

Eq. (2.11) can be used to solve both the first and the second (the principal) problems of dynamics. To solve the principal problem of dynamics we must know, besides the acting forces, the initial conditions, i.e., the position and velocity of the particle at the initial time. The initial conditions for a set of coordinate axes $O x y z$ are specified in the form: at $t=0$,

$$
\begin{gather*}
x=x_{0}, y=y_{0}, z=z_{0}, \\
v_{x}=v_{x 0}, v_{y}=v_{y 0}, v_{z}=v_{z 0} . \tag{2.12}
\end{gather*}
$$

Knowing the acting forces, by integrating Eq. (2.11), we find the coordinates x, y, z of the moving particle as functions of time t, i.e., the equation of motion for the particle. The solutions will contain six constants of integration $C_{1}, C_{2}, \ldots, C_{6}$, the values of which must be found from the initial conditions (2.12). An example of integrating of Eqs.(2.11) is given in §2.3.

2.3. Motion of a Particle Thrown at an Angle to the Horizon in a Uniform Gravitational Field

Let us investigate the motion of a projectile thrown with an initial velocity $\boldsymbol{v}_{\mathbf{0}}$ at an angle α to the horizon, considering it as a material particle of mass m, neglecting the resistance of the atmosphere, assuming that the horizontal range is small as compared with the radius of the earth and considering the gravitational field to be uniform ($P=$ const.).

Place the origin of the coordinate axes O at the initial position of the particle,

Fig. 7 direct the y-axis vertically up, the x-axis in the plane through $O y$ and vector $\boldsymbol{v}_{\mathbf{0}}$, and the z-axis perpendicular to the first two (Fig. 7). The angle between vector $\boldsymbol{v}_{\mathbf{0}}$ and the x-axis will be α.

Draw now moving particle M anywhere on its path. Acting on the particle is only the force of gravity \boldsymbol{P}, the projections of which on the coordinate axes are $P_{x}=0, P_{y}=-P=$ $-m g, P_{z}=0$.

Substituting these values into Eq.(2.11) and noting that $\frac{d^{2} x}{d t^{2}}=\frac{d v_{x}}{d t}$, etc., after eliminating m, we obtain:

$$
\frac{d v_{x}}{d t}=0, \quad \frac{d v_{y}}{d t}=-g, \quad \frac{d v_{z}}{d t}=0
$$

Multiplying these equations by $d t$ and integrating, we find $v_{x}=C_{1}, v_{y}=$ $-g t+C_{2}, v_{z}=C_{3}$.

The initial conditions of our problem have the form

$$
\begin{gathered}
\text { at } x=0, y=0, z=0 \\
v_{x}=v_{0} \cos \alpha, \quad v_{y}=v_{0} \sin \alpha, v_{z}=0
\end{gathered}
$$

Satisfying the initial conditions, we have

$$
C_{1}=v_{0} \cos \alpha, C_{2}=v_{0} \sin \alpha=0, C_{3}=0
$$

Substituting these values of C_{1}, C_{2} and C_{3} in the solutions above and replacing v_{x}, v_{y}, v_{z} by $\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}$, we arrive at the equations

$$
\frac{d x}{d t}=v_{0} \cos \alpha, \frac{d y}{d t}=v_{0} \sin \alpha-g t, \frac{d z}{d t}=0
$$

Integrating, we obtain $x=v_{0} t \cos \alpha+C_{4}, y=v_{0} t \sin \alpha-\frac{g t^{2}}{2}+C_{5}, z=C_{6}$.
Substituting the initial conditions, we have $C_{4}=C_{5}=C_{6}=0$. And finally we obtain the equations of motion of particle M in the form

$$
\begin{equation*}
x=v_{0} t \cos \alpha, y=v_{0} t \sin \alpha-\frac{g t^{2}}{2}, z=0 \tag{2.13}
\end{equation*}
$$

From the last equation it follows that the motion takes place in the plane $O x y$.
Knowing the equations of motion of a particle it is possible to determine all the characteristics of the given motion by the methods of Kinematics.

1. Path. Eliminating the time t between the first two of Eqs. (2.13), we obtain the equation of the path of the particle:

$$
\begin{equation*}
y=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \tag{2.14}
\end{equation*}
$$

This is an equation of a parabola the axis of which is parallel to the y-axis. Thus, a heavy particle thrown at an angle to the horizon in vacuum follows a parabolic path.
2. Horizontal Range. The horizontal range is the distance $O C=X$ along the x axis. Assuming in Eq. (2.14) $y=0$, we obtain the points of intersection of the path with the x-axis. From the equation

$$
x\left(\tan \alpha-\frac{g x}{2 v_{0}^{2} \cos ^{2} \alpha}\right)=0
$$

we obtain

$$
x_{1}=0, x_{2}=\frac{2 v_{0}^{2} \cos ^{2} \alpha \tan \alpha}{g}
$$

The first solution gives point 0 , the second point C. Consequently $X=x_{2}$ and finally

$$
\begin{equation*}
X=\frac{v_{0}^{2}}{g} \sin 2 \alpha \tag{2.15}
\end{equation*}
$$

From Eq. (2.15) we see that the horizontal range X is the same for angle β, where $2 \beta=180^{\circ}-2 \alpha$, i.e., if $\beta=90^{\circ}-\alpha$. Consequently, a particle thrown with a given initial velocity v_{0} can reach the same point C by two paths: flat (low) ($\alpha<45^{\circ}$) or curved (high) ($\beta=90^{\circ}-\alpha>45^{\circ}$). With a given initial velocity v_{0} the maximum horizontal range in vacuum is obtained when $\sin 2 \alpha=1$, i.e., when angle $\alpha=45^{\circ}$.
3. Height of path. If in Eq. (2.14) we assume $x=\frac{1}{2} X=\frac{v_{0}^{2}}{g} \sin \alpha \cos \alpha$, we obtain the height H of the path:

$$
\begin{equation*}
H=\frac{v_{0}^{2}}{2 g} \sin ^{2} \alpha \tag{2.16}
\end{equation*}
$$

4. Time of flight. It follows from Eq. (2.13) that the total time of flight is defined by the equation $X=v_{0} T \cos \alpha$. Substituting the expression for X, we obtain

$$
\begin{equation*}
T=\frac{2 v_{0}}{g} \sin \alpha . \tag{2.17}
\end{equation*}
$$

At the maximum range angle $\alpha^{*}=45^{\circ}$, all the quantities become respectively

$$
X^{*}=\frac{v_{0}^{2}}{g}, T^{*}=\frac{\sqrt{2} v_{0}}{g}, H^{*}=\frac{v_{0}^{2}}{4 g} X .
$$

2.4. Solution of Problems

Problem 5. A load of weight P starts moving from rest along a smooth horizontal plane under the action of a force \boldsymbol{R} the magnitude of which increases in proportion to the time, the relation being $R=k t$.

Fig. 8 Develop the equation of motion for the load.

Solution. Place the origin O in the initial position of the load and direct the axis $O x$ in the direction of motion (see Fig. 8). Then the initial conditions are: at $t=0, x=0$ and $v_{x}=0$. Draw the load in an arbitrary position and the forces acting on it. We have $R_{x}=R=k t$, and Eq. (2.2) takes the form

$$
\frac{P}{g} \frac{d v}{d t}=k t .
$$

Multiplying through by $d t$, we immediately separate the variables and obtain

$$
v_{x}=\frac{k g}{P} \frac{t^{2}}{2}+C_{1} .
$$

Substituting the initial values into this equation, we find that $C_{1}=0$. Then, substituting $\frac{d x}{d t}$ for v_{x}, we have

$$
\frac{d x}{d t}=\frac{k g}{2 P} t^{2} .
$$

Multiplying through by $d t$ we again separate the variables and, integrating, we find

$$
x=\frac{k g}{2 P} \frac{t^{3}}{3}+C_{2} .
$$

Substitution of the initial values gives $C_{2}=0$, and we obtain the equation of motion for the load in the form

$$
x=\frac{k g}{6 P} t^{3} .
$$

Problem 6. Neglecting the resistance of the air, determine the time it would take a body to travel from end to end of a tunnel $A B$ dug through the earth along a chord (Fig. 9). Assume the earth's radius to be $R=6,370 \mathrm{~km}$.

Note. The theory of gravitation states that a body inside the earth is attracted towards the centre of the earth with a force F directly proportional to the distance r from the centre. Taking into account that, at $r=R$ (i.e., at the surface of the earth), force F is equal to the weight of the body ($F=m g$), we find that inside the earth $F=\frac{m g}{R} r$, where $r=M C$ is the distance of point M from the centre of the earth.

Solution. Place the origin O in the

Fig. 9 middle of the chord $A B$ (where a body in the tunnel would be in equilibrium) and direct the axis $O x$ along $O A$. If we assume the chord to be of length $2 a$, initial conditions will be: at $t=0, x=a$ and $v_{x}=0$.

The forces acting on the body in an arbitrary position are \boldsymbol{F} and \boldsymbol{N}. Consequently,

$$
\sum F_{k x}=-F \cos \alpha=-\frac{m g}{R} r \cos \alpha=-\frac{m g}{R} x,
$$

as it is evident from the diagram that $r \cos \alpha=x$.
We see that the acting force depends on the coordinate x of point M. In order to separate the variables in the differential equation of motion, write it in the form (2.3). Then, eliminating m and introducing the quantity

$$
\frac{g}{R}=k^{2},
$$

we obtain

$$
v_{x} \frac{d v_{x}}{d x}=-k^{2} x
$$

Multiplying through by $d x$, we separate the variables and, integrating, obtain

$$
\frac{v_{x}^{2}}{2}=k^{2} \frac{x^{2}}{2}+C_{1} .
$$

From the initial condition, at $x=a, v_{x}=0$; hence $C_{1}=\frac{1}{2} k^{2} a^{2}$. Substituting this expression of C_{1}, we have

$$
v_{x}= \pm k \sqrt{a^{2}-x^{2}}
$$

As in the investigated position the velocity is directed from M to $O, v_{x}<0$, and the sign before the radical should be minus. Then, substituting $\frac{d x}{d t}$ for v_{x}, we have

$$
\frac{d x}{d t}=-k \sqrt{a^{2}-x^{2}}
$$

Separating the variables, we write the equation in the from

$$
k d t=-\frac{d x}{\sqrt{a^{2}-x^{2}}}
$$

and integrating, we obtain

$$
k t=\arccos \frac{x}{a}+C_{2}
$$

Substituting the initial data (at $t=0, x=a$) in this equation, we find that $C_{2}=0$. The equation of motion for the body in the tunnel is

$$
x=a \cos k t
$$

Thus, the body is in harmonic motion with an amplitude a.
Now let us determine the time t_{1} when the body will reach the end B of the tunnel. At B the coordinate $x=-a$. Substituting this value in the equation of motion, we obtain $\cos k t_{1}=-1$, whence $k t_{1}=\pi$ and $t_{1}=\frac{\pi}{k}$. But we have assumed $k=\sqrt{\frac{g}{R}}$. Calculating, we find that the time of the motion through the tunnel, given the conditions of the problem, does not depend on the length of the tunnel and is always equal to

$$
t_{1}=\pi \sqrt{\frac{R}{g}} \approx 42 \min 11 \mathrm{sec}
$$

Let us also find the maximum velocity of the body. From the expression for v_{x} we see that $v=v_{\max }$ at $x=0$, i.e., at the origin O. The magnitude of the velocity is

$$
v_{\max }=k a=a \sqrt{\frac{g}{R}}
$$

If, for example, $2 a=0.1 R=637 \mathrm{~km}$, then $v_{\max } \approx 395 \mathrm{~m} / \mathrm{sec}=1,422 \mathrm{~km} / \mathrm{h}$.
Problem 7. A boat of weight $P=400 N$ is pushed and receives an initial velocity

Fig. 10 $v_{0}=0.5 \mathrm{~m} / \mathrm{sec}$. Assuming the resistance of the water at low velocities to be proportional to the first power of the velocity and changing according to the equation $R=\mu v$, where the factor $\mu=9,3 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}$, determine the time in which the velocity will drop by one-half and the distance the boat will travel in that time. Determine also the distance the
boat will travel till it stops.

Solution. Let us choose the origin O to coincide with the initial position of the boat, pointing the axis $O x$ in the direction of the motion (Fig.10). In this case the initial conditions will be: at $t=0, x=0$ and $v_{x}=v_{0}$. Draw the boat in an arbitrary position with the acting forces $\boldsymbol{P}, \boldsymbol{N}$, and \boldsymbol{R}.

Calculating the projections of the acting forces, we find that

$$
\sum F_{k x}=-R=-\mu v
$$

To determine the duration of the motion, we write differential equation. Noting that $v_{x}=v$, we have

$$
\frac{P}{g} \frac{d v}{d t}=-\mu v
$$

Separating the variables, we obtain

$$
\frac{d v}{v}=-\frac{\mu g}{P} d t
$$

whence, integrating, we have

$$
\ln v=-\frac{\mu g}{P} t+C_{1}
$$

Substituting the initial values, we have $C_{1}=\ln v_{0}$, and finally

$$
t=\frac{P}{\mu g} \ln \frac{v_{0}}{v}
$$

The required time t_{1}, is determined by assuming $v=0.5 v_{0}$. We see that in this case the time does not depend on the value of v_{0}. As $\ln 2=0.69$,

$$
t_{1}=\frac{P}{\mu g} \ln 2 \approx 3 \mathrm{sec}
$$

To determine the distance, it is best to write the differential equation of motion in the form (2.3), as it immediately establishes the relation between x and v. We thus obtain

$$
\frac{P}{g} v \frac{d v}{d x}=-\mu v
$$

whence, eliminating v and separating the variables, we find

$$
d v=-\frac{\mu g}{P} d x
$$

and consequently

$$
v=-\frac{\mu g}{P} x+C_{1} .
$$

Since at $x=0$ the velocity $v=v_{0}$, then $C_{1}=v_{0}$, and finally

$$
x=\frac{P}{\mu g}\left(v_{0}-v\right)
$$

Assuming $v=0.5 v_{0}$, we find the required displacement: $x_{1}=\frac{P v_{0}}{2 \mu g} \approx 1.1 \mathrm{~m}$.
To find the distance travelled by the boat till it stops, in the last equation we assume $v=0$. Then $x_{2}=\frac{P v_{0}}{\mu g}=2.2 \mathrm{~m}$.

3. VIBRATION OF A PARTICLE

3.1. Free Harmonic Motion

The study of vibrations is essential for a number of physical and engineering fields. Although the vibrations studied in such different fields as mechanics, radio engineering, and acoustics are of different physical nature, the fundamental laws hold good for all of them. The study of mechanical vibrations is therefore of importance not only because they are frequently encountered in engineering but also because the results obtained in investigating mechanical vibrations can be used in studying and understanding vibration phenomena in other fields.

We shall start with examining free harmonic motion of a particle. Consider a particle M (Fig.11) moving rectilinearly under the action of a restoring force \boldsymbol{F} directed towards a fixed centre O and proportional to the distance from that centre. The projection of \boldsymbol{F} on the axis $O x$ is

$$
\begin{equation*}
F_{x}=-c x \tag{3.1}
\end{equation*}
$$

Fig. 11

We see that the force \boldsymbol{F} tends to return the particle to its position of equilibrium 0 , where $F=0$, which is why it is called a "restoring" force. Let us derive the equation of motion of the particle M. Writing the differential equation of motion (2.1), we
obtain

$$
m \frac{d^{2} x}{d t^{2}}=-c x .
$$

Dividing both sides of the equation by m and introducing notation

$$
\begin{equation*}
\frac{c}{m}=k^{2}, \tag{3.2}
\end{equation*}
$$

we reduce the equation to the form

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+k^{2} x=0 . \tag{3.3}
\end{equation*}
$$

Eq. (3.3) is the differential equation of free harmonic motion. Referring to the theory of differential equations, as the roots of a characteristic equation of the type of Eq. (3.3) are imaginary, its general solution will be

$$
\begin{equation*}
x=C_{1} \sin k t+C_{2} \cos k t \tag{3.4}
\end{equation*}
$$

where C_{1} and C_{2} are constants of integration.
If we replace C_{1} and C_{2} by constants a and α, such that $C_{1}=a \cos \alpha$ and $C_{2}=a \sin \alpha$, we obtain

$$
\begin{gather*}
x=a(\sin k t \cos \alpha+\cos k t \sin \alpha) \text { or } \\
x=a \sin (k t+\alpha) . \tag{3.5}
\end{gather*}
$$

This is another form of the solution of Eq. (3.3) in which the constants of integration appear as a and α, and which is more convenient for general analyses.

The velocity of a particle in this type of motion is

$$
\begin{equation*}
v_{x}=\frac{d x}{d t}=a k \sin (k t+\alpha) . \tag{3.6}
\end{equation*}
$$

The vibration of a particle described by Eq. (3.5) is called simple harmonic motion.

The quantity a, which is the maximum distance of M from the centre of vibration, is called the amplitude of vibration (Fig. 12). The quantity $\varphi=k t+\alpha$ is called the phase of vibration. Unlike the coordinate x, the phase φ defines both the position of the particle at any given time and the

Fig. 12 direction of its subsequent motion.

The quantity k is called the angular, or circular, frequency of vibration. The time T in which the moving particle makes one complete oscillation is called the period of vibration. In one period the phase changes by 2π. Consequently, we must have $k T=2 \pi$, whence the period

$$
\begin{equation*}
T=\frac{2 \pi}{k} . \tag{3.7}
\end{equation*}
$$

The quantity v, which is the inverse of the period and specifies the number of oscillations per second, is called the frequency of vibration:

$$
v=\frac{1}{T}=\frac{k}{2 \pi} .
$$

It can be seen from this that the quantity k differs from v only by a constant multiplier 2π. Usually we shall speak of the quantity k as of frequency.

The values of a and α are determined from the initial conditions. Assuming that, at $t=0, x=x_{0}$ and $v_{x}=v_{0}$ we obtain from Eqs. (3.5) and (3.6) $x_{0}=a \sin \alpha$ and $\frac{v_{0}}{k}=$ $a \cos \alpha$. By first squaring and adding these equations and then dividing them, we obtain

$$
a=\sqrt{\frac{v_{0}^{2}}{k}+x_{0}^{2}}, \tan \alpha=\frac{k x_{0}}{v_{0}} .
$$

Note the following properties of free harmonic motion:

1) The amplitude and initial phase depend on the initial conditions;
2) The frequency k, and consequently the period T, do not depend on the initial conditions and are invariable characteristics for a given vibrating system.

It follows, in particular, that if a problem requires that only the period (or frequency) of vibration be determined, it is necessary to write a differential equation of motion in the form (3.3). Then T is found immediately from Eq. (3.7) without integrating.

Consider the next example: a weight is attached to end B of a vertical spring $A B$ and released from rest (Fig.13). Determine the law of motion of the weight if the elongation of the spring in the equilibrium condition is $\delta_{s t}$ (the static elongation of the spring).

Place the origin O of the coordinate axis in the position of static equilibrium of

Fig. 13 the system and direct the axis $O x$ vertically down. The elastic force $F=c|\Delta l|$. In our case $\Delta l=\delta_{s t}+x$, hence

$$
F_{x}=-c\left(\delta_{s t}+x\right)
$$

Writing the differential equation of motion, we obtain

$$
m \frac{d^{2} x}{d t^{2}}=-c\left(\delta_{s t}+x\right)+P
$$

But from the conditions of the problem the gravitational force $P=m g=c \delta_{s t}$ (in the position of equilibrium force P is balanced by the elastic force $c \delta_{s t}$). Introducing the notation $\frac{c}{m}=\frac{g}{\delta_{s t}}=k^{2}$, we reduce the equation to the form

$$
\frac{d^{2} x}{d t^{2}}+k^{2} x=0
$$

whence immediately we find the period of vibration

$$
T=\frac{2 \pi}{k}=2 \pi \sqrt{\frac{\delta_{s t}}{g}}
$$

Thus, the period of vibration is proportional to the square root of the static elongation of the spring (this holds good also for a load vibrating on an elastic beam, where $\delta_{s t} i s$ the static deflection of the beam).

The solution of the obtained differential equation is

$$
x=C_{1} \sin k t+C_{2} \cos k t
$$

From the initial conditions, at $t=0, \quad x=\delta_{s t}$, and $v_{x}=0 . \quad$ ss $v_{x}=\frac{d x}{d t}=$ $k C_{1} \cos k t-k C_{2} \sin k t$, substituting the initial conditions, we obtain $C_{2}=$ $-\delta_{s t}, C_{1}=0$. Hence, the amplitude of vibration is $\delta_{s t}$ and the motion is according to the law

$$
x=-\delta_{s t} \cos k t
$$

We see that the maximum elongation of the spring in this motion is $2 \delta_{s t}$.
This solution shows that a constant force \boldsymbol{P} does not change the type of motion under the action of an elastic force \boldsymbol{F} but only shifts the center of the vibrations in the direction of the action of the force by the quantity $\delta_{s t}$ (without the force \boldsymbol{P} the vibration would, evidently, be about B).

3.2. Damped Vibration

Let us see how the resistance of a surrounding medium affects vibrations,

Fig. 14 assuming the resisting force proportional to the first power of the velocity: $\boldsymbol{R}=-\mu \boldsymbol{v}$ (the minus indicates that force \boldsymbol{R} is opposite to \boldsymbol{v}). Let a moving particle be acted upon by a restoring force \boldsymbol{F} and a resisting force \boldsymbol{R}
(Fig. 14).
Then $F_{x}=-c x, R_{x}=-\mu v_{x}=-\mu \frac{d x}{d t}$ and the differential equation of motion is

$$
m \frac{d^{2} x}{d t^{2}}=-c x-\mu \frac{d x}{d t} .
$$

Dividing both sides by m, we obtain

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}+2 b \frac{d x}{d t}+k^{2} x=0, \tag{3.8}\\
& \frac{c}{m}=k^{2}, \frac{\mu}{m}=2 b . \tag{3.9}
\end{align*}
$$

where
It is easy to verify that k and b have the same dimension $\left(\sec ^{-1}\right)$, which makes it possible to compare them.

Eq. (3.8) is called the differential equation of damped vibration. The solution of Eq (3.8) can be found by passing to a new variable z through the equality $x=z e^{-b t}$. Then

$$
\frac{d x}{d t}=e^{-b t}\left(\frac{d z}{d t}-b z\right) ; \frac{d^{2} x}{d t^{2}}=e^{-b t}\left(\frac{d^{2} z}{d t^{2}}-2 b \frac{d z}{d t}+b^{2} z\right) .
$$

Substituting these expressions and the expression of x into Eq. (3.8), and after the necessary computation, we obtain

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}+\left(k^{2}-b^{2}\right) z=0 . \tag{3.10}
\end{equation*}
$$

Let us consider the case when $k>b$, i.e., when the resistance is small as compared with the restoring force. Introducing the notation

$$
\begin{equation*}
\tilde{k}=\sqrt{k^{2}-b^{2}}, \tag{3.11}
\end{equation*}
$$

we see that Eq. (3.10) coincides with Eq. (3.3).Consequently, $z=a \sin (\tilde{k} t+\alpha)$ or, passing to x,

$$
\begin{equation*}
x=a e^{-b t} \sin (\tilde{k} t+\alpha) . \tag{3.12}
\end{equation*}
$$

The expression (3.12) gives the solution of differential equation (3.8). The quantities a and α are constants of integration and are determined by the initial conditions.

Vibrations according to the law (3.12) are called damped because, due to the multiplier $e^{-b t}$, the value of x decreases with time and tends to zero. A graph of such vibrations is given in Fig. 15. The graph shows that

Fig. 15 the vibrations are not periodic, though they do show a certain repetition. For example, a particle oscillating about a centre O returns to that centre at certain intervals \tilde{T} equal to the period of $\sin (\tilde{k} t+$ $\alpha)$.

Therefore, the quantity

$$
\begin{equation*}
\tilde{T}=\frac{2 \pi}{\tilde{k}}=\frac{2 \pi}{\sqrt{k^{2}-b^{2}}} \tag{3.13}
\end{equation*}
$$

is conventionally called the period of damped vibration. Comparing, Eqs. (3.13) and (3.7), we see that $\tilde{T}>T$, i.e., that resistance to vibration tends to increase the period of the
vibration. When however, the resistance is small ($b \ll k$) the quantity b^{2} can be neglected in comparison with k^{2} and we can assume $\widetilde{T} \approx T$. Thus, a small resistance has no practical effect on the period of vibration.

The time interval between two successive displacements of an oscillating particle to the right or to the left is also equal to \tilde{T}. Hence, if the maximum displacement x, to the right takes place at time t_{1} the second displacement x_{2} will be at time $t_{2}=t_{1}+\tilde{T}$, etc. Then, by Eq. (3.12) and taking into account that $\tilde{k} \tilde{T}=2 \pi$, we have

$$
\begin{gathered}
x_{1}=a e^{-b t_{1}} \sin \left(\tilde{k} t_{1}+\alpha\right) \\
x_{2}=a e^{-b\left(t_{1}+\tilde{T}\right)} \sin \left(\tilde{k} t_{1}+\tilde{k} \tilde{T}+\alpha\right)=x_{1} e^{-b \tilde{T}}
\end{gathered}
$$

Similarly, for any displacement x_{n+1} we will have $x_{n+1}=x_{n} e^{-b \tilde{T}}$.Thus we find that the amplitude of vibration decreases in geometric progression. The denominator of this progression $e^{-b \tilde{T}}$ is called the damping decrement, and the modulus of its logarithm, i.e., the quantity $b \tilde{T}$, the logarithmic decrement.

It follows from these results that a small resistance has practically no effect on the period of vibration, but gradually damps it by virtue of the amplitude of vibration decreasing according to a law of geometric progression.

When the resistance is large and $b>k$, the solution of Eq. (3.10) contains no trigonometric functions. The particle no longer oscillates but instead, under the influence of the restoring force, gradually approaches the position of equilibrium.

3.3. Damped Forced Vibrations. Resonance

Consider the motion of a particle on which are acting a restoring force \boldsymbol{F}, a damping force \boldsymbol{R} proportional to the velocity (see $\S 3.2$), and a disturbing force \boldsymbol{Q}, whose projection on the axis $O x$ is $Q_{x}=Q_{0} \sin p t$. The differential equation of this motion has the form

$$
m \frac{d^{2} x}{d t^{2}}=-c x-\mu \frac{d x}{d t}+Q_{0} \sin p t
$$

Dividing both sides of the equation by m, assuming $\frac{Q_{0}}{m}=P_{0}$ and taking into account the expression (3.9), we obtain

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 b \frac{d x}{d t}+k^{2} x=Q_{0} \sin p t \tag{3.14}
\end{equation*}
$$

Eq. (3.14) is the differential equation of damped forced vibration of a particle. Its general solution, as is known, has the form $x=x_{1}+x_{2}$, where x_{1} is the general solution of the equation without the right side, i.e., of Eq. (3.8) [at $k>b$ this solution is given by Eq. (3.12)], and x_{2}, is a particular solution of the complete equation (3.14). Let us find the solution x_{2} in the form

$$
x_{2}=A \sin (p t-\beta)
$$

where A and β are constants so chosen that Eq. (3.14) should become an identity. Differentiating, we obtain

$$
\frac{d x_{2}}{d t}=A p \cos (p t-\beta), \frac{d^{2} x_{2}}{d t^{2}}=-A p^{2} \sin (p t-\beta)
$$

Substituting these expressions of the derivatives and x_{2} into the left side of Eq. (3.14) and introducing for the sake of brevity the notation $p t-\beta=\psi$ (or $p t=\psi+$ β), we obtain

$$
A\left(-p^{2}+k^{2}\right) \sin \psi+2 b p A \cos \psi=P_{0}(\cos \beta \sin \psi+\sin \beta \cos \psi)
$$

For this equation to be satisfied at any value of ψ, i.e., at any instant of time, the factors of $\sin \psi$ and $\cos \psi$ in the left and right sides should be separately equal. Hence,

$$
A\left(k^{2}-p^{2}\right)=P_{0} \cos \beta, \quad 2 b p A=P_{0} \sin \beta
$$

First squaring and adding these equations, and then dividing one by the other, we obtain:

$$
\begin{equation*}
A=\frac{P_{0}}{\sqrt{\left(k^{2}-p^{2}\right)^{2}+4 b^{2} p^{2}}}, \tan \beta=\frac{2 b p}{k^{2}-p^{2}} \tag{3.15}
\end{equation*}
$$

As $x=x_{1}+x_{2}$, and the expression x_{1} is given by Eq. (3.12), we have the final solution of Eq. (3.14) in the form

$$
\begin{equation*}
x=a e^{-b t} \sin (\tilde{k} t+\alpha)+A \sin (p t-\beta) \tag{3.16}
\end{equation*}
$$

Here a and α are constants of integration determined from the initial conditions, and the expressions for A and β are given by Eqs. (3.15) and do not depend on the initial conditions. These vibrations are compounded of natural vibration [the first term in Eq. (3.16); Fig. 16 a] and forced vibration [the second term in Eq. (3.16); Fig. 16 b]. The natural vibration of the particle in such a case was discussed in § 3.2. It was established that it is transient

Fig. 16 and is damped fairly quickly, and after a certain interval of time t_{t} called the transient period, can be neglected. A curve showing the transient vibration is given in Fig. 16 c. For practical purposes it can thus be assumed that after a certain transient period a particle will vibrate according to the law

$$
x=A \sin (p t-\beta)
$$

This is steady-state forced vibration, a sustained periodic motion with amplitude A defined by Eq. (3.15) and a frequency p equal to the impressed frequency. The quantity β characterizes the phase shift of forced vibration with respect to the disturbing force. Let us investigate the results obtained. First let us introduce the notation

$$
\begin{equation*}
\frac{p}{k}=\lambda, \frac{b}{k}=h, \frac{P_{0}}{k^{2}}=\frac{Q_{0}}{c}=\delta_{0} \tag{3.18}
\end{equation*}
$$

where λ is the frequency ratio, h a quantity characterizing the damping effect, δ_{0} the magnitude of the static deflection of a particle under the action of force Q_{0}.

Then, dividing the numerator and denominator of Eq. (3.15) by k^{2}, we obtain

$$
\begin{equation*}
A=\frac{\delta_{0}}{\sqrt{\left(1-\lambda^{2}\right)^{2}+4 h^{2} \lambda^{2}}}, \quad \tan \beta=\frac{2 h \lambda}{1-\lambda^{2}} \tag{3.19}
\end{equation*}
$$

It can be seen from Eq. (3.19) that A and β depend on two dimensionless parameters λ and h. Graphs of this relation for certain values of h are given in Fig. 17. The values of δ_{0}, λ and h can be computed for each specific problem from its conditions, and the values of A and p determined from the respective graphs or Eqs. (3.19).

These graphs (and equations) also show that by altering the frequency ratio λ we

Fig. 17 can induce forced vibrations of different amplitude.

When the resistance is very small (as ordinarily in the atmosphere) and λ is not close to unity, it is possible in Eqs. (3.19) assume approximately $h \approx$ 0 . In this case we obtain

$$
\begin{gathered}
A \approx \frac{\delta_{0}}{\left|1-\lambda^{2}\right|} ; \beta \approx \\
0(\text { at } \lambda<1), \beta \approx \\
180^{0}(\text { at } \lambda>1) .
\end{gathered}
$$

Let us consider also the following special cases: 1) If the frequency ratio λ is very small ($p \ll k$), then, assuming as an approximation $\lambda \approx 0$, we obtain from Eq. (3.19) $A \approx \delta_{0}$. The vibration in this case has an amplitude equal to the static deflection δ_{0} and the phase shift is $\beta=0$.
2) If the frequency ratio λ is very large $(p \gg k), A$ becomes very small. This case is of special interest for the absorption of vibrations in structures, instruments, etc. Assuming the resistance to be small and neglecting $2 h \lambda$ and 1 as compared with λ^{2} in Eq. (3.19), we obtain for computing A an approximate formula:

$$
A=\frac{\delta_{0}}{\lambda^{2}}=\frac{P_{0}}{p^{2}} .
$$

3) In all cases of practical interest h is very small. Then, from Eq. (3.19), if λ is almost unity the amplitude of forced vibrations becomes very large. This phenomenon is called resonance.

At resonance we can assume $\lambda=1$ in Eq. (3.19), and then

$$
\begin{equation*}
A_{r}=\frac{\delta_{0}}{2 h}, \beta_{r}=\frac{\pi}{2} . \tag{3.20}
\end{equation*}
$$

We see that when h is small A_{r} can become very large. When the damping force, and with it h, tends to zero, the limiting value of the amplitude A_{r} as Eq. (3.20) shows, tends to infinity. Thus, with no damping force the vibration amplification process in resonance conditions is unlimited and the amplitude increases indefinitely.

A graph of resonance vibration is given in Fig. 18. When the damping forces are

Fig. 18 very small the picture is similar.

General Properties of Forced Vibration. It follows from the results obtained above that forced vibration has the following important properties, which distinguish it from the natural vibration of a particle:

1) The amplitude of forced vibration does not depend on the initial conditions.
2) Forced vibration does not die out in the presence of resistance.
3) The frequency of forced vibration is equal to the frequency of the disturbing force and does not depend on the characteristics of the vibrating system (the disturbing force "impresses" its own vibration frequency on the system).
4) Even when the disturbing force Q is small, large forced vibration can be induced if the resistance is small and the frequency p is almost equal to k (resonance).
5) Even if the disturbing force is large, forced vibration can be damped if the frequency p is much larger than k.

Forced vibration, and resonance in particular, plays an important part in many branches of physics and engineering. Lack of balance in working machines and motors, for example, usually causes forced vibration to appear in the machine or its foundation.

In radio engineering the reverse is true. Resonance is extremely useful and is used to separate the signals of one radio station from those of all others (tuning).

3.4. Solution of Problems

Problem 8. Determine the periods of vibration of a load of weight P attached to two springs of stiffness C_{1} and C_{2} as shown in Figs. 19 and 20.

Solution. a) In the first case, in the static position both springs are subjected to a tensile force P. Therefore, the static elongations are

$$
\delta_{1 s t}=\frac{P}{C_{1}}, \delta_{2 s t}=\frac{P}{C_{2}^{\prime}}
$$

and the total elongation is

$$
\begin{gathered}
\delta_{s t}=\delta_{1 s t}+\delta_{2 s t}=\frac{P\left(C_{1}+C_{2}\right)}{C_{1} C_{2}}, \text { and } \\
C_{e q}=\frac{c_{1} C_{1}}{C_{1}+C_{2}^{\prime}},
\end{gathered}
$$

where $C_{e q}$ is the equivalent spring constant of the two given springs. In particular, at $C_{1}=C_{2}$ we have

Fig. 19

Fig. 20

$$
C_{e q}=\frac{1}{2} C .
$$

The period of vibration is

$$
T=2 \pi \sqrt{\frac{\delta_{s t}}{g}}=2 \pi \sqrt{\frac{P\left(C_{1}+C_{2}\right)}{g C_{1} C_{2}}}
$$

b) In the second case the top spring is subjected to a tensile force P_{1}, and the bottom spring is subjected to a compressive force P_{2}, such that $P_{1}+P_{2}=P$. For these springs we have $\delta_{1 s t}=\frac{P_{1}}{c_{1}}, \delta_{2 s t}=\frac{P_{2}}{c_{2}}$. But obviously $\delta_{1 s t}=\delta_{2 s t}=\delta_{s t}$, and by virtue of the property of proportions

$$
\delta_{s t}=\frac{P_{1}}{c_{1}}=\frac{P_{2}}{c_{2}}=\frac{P_{1}+P_{2}}{c_{1}+c_{2}} \text { or } \delta_{s t}=\frac{P}{c_{1}+c_{2}} .
$$

The equivalent stiffness $c_{e q}=c_{1}+c_{2}$ and the period of vibration

$$
T=2 \pi \sqrt{\frac{\delta_{s t}}{g}}=2 \pi \sqrt{\frac{P}{g\left(c_{1}+c_{2}\right)}} .
$$

Problem 9. The deflection caused in a beam by the weight of a motor mounted as shown in Fig. 21 is $\delta_{s t}=1 \mathrm{~cm}$. At how many rpm of the shaft will resonance appear?

Solution. The period of natural vibration of the beam is

Fig. 21

$$
T=2 \pi \sqrt{\frac{\delta_{s t}}{g}}
$$

If the centre of gravity of the shaft is not concentric with its axis, a centrifugal force \boldsymbol{Q}_{0} will develop (Fig. 21). Its component $Q_{x}=$ $Q_{0} \sin \omega t$ (where ω is the angular velocity of the shaft) is the disturbing force acting on the beam; its frequency is $p=\omega$. Hence, the period of the forced vibration is $T_{f}=\frac{2 \pi}{\omega}$.

Resonance will appear when $T_{\mathrm{f}}=T$, i.e., at

$$
\omega_{c r}=\sqrt{\frac{g}{\delta_{s t}}}=31.3 \mathrm{sec}^{-1}
$$

Hence, the critical speed

$$
n_{c r}=\frac{30 \omega_{c r}}{\pi}=300 \mathrm{rpm}
$$

The working speed of the motor should be much greater than $n_{c r}$.
Problem 10. Analyze the forced vibration of a load attached to a spring (see example in p.3.1) if the upper end A of the spring oscillates vertically according to the law $\xi=a_{0} \sin p t$.

Solution. Draw axis $O x$ as in Fig. 13. If we imagine the upper end of the spring displaced from point A downwards by a quantity ξ, the length of the spring will be $l=l_{0}-\xi+\delta_{s t}+x$. Then $F_{x}=-c \Delta l=-c\left(\delta_{s t}+x-\xi\right)$, and the differential equation of motion, neglecting the resistance of the air and taking into account that $P=c \delta_{\mathrm{st}}$, will be

$$
m \frac{d^{2} x}{d t^{2}}=-c\left(\delta_{s t}+x-\xi\right)+P=-c x+c \xi
$$

Introducing the notation $\frac{c}{m}=k^{2}$,
we obtain

$$
\frac{d^{2} x}{d t^{2}}+k^{2} x=k^{2} a_{0} \sin p t
$$

Consequently, the load will experience forced vibration, since, if we assume $b=0$ and $P_{0}=k^{2} a_{0}$, the equation coincides with Eq. (3.14). It can be seen from Eq. (3.18) that in the present case $\delta_{0}=a_{0}$, and $h=0$. The amplitude of forced vibration and the phase shift are determined by the Eq. (3.19).

If $p \ll k$ (the top end of the spring oscillates very slowly), then $\lambda \approx 0$ and $A \approx a_{0}$ and the phase shift $\beta=0$. The load will oscillate as if the spring were a rigid rod, which physically corresponds to the condition $k \gg p$. At $p=k$ resonance appears and the amplitude increases sharply. If the frequency p becomes larger than $k(\lambda>1)$ the load will vibrate in such a way that it will move down when the end of the spring moves up and vice versa (a phase shift of $\beta=180^{\circ}$), and the larger the value of p the smaller the amplitude. Finally, when p is much greater than $k(\lambda \gg 1)$, the amplitude $A \approx 0$. The load will remain in the position of static equilibrium (point O) even though the top end of the spring will oscillate with amplitude a_{0} (the frequency of this vibration is so large that the load, as it were, is unable to keep up with it).

4. INTRODUCTION TO THE DYNAMICS OF A SYSTEM

4.1. Mechanical Systems. External and Internal Forces

A mechanical system is defined as such a collection of material points (particles) or bodies in which the position or motion of each particle or body of the system depends on the position and motion of all the other particles or bodies. We shall thus regard a material body as a system of its particles.

A classical example of a mechanical system is the solar system, all the component bodies of which are connected by the forces of their mutual attraction.

A collection of bodies not connected by interacting forces does not comprise a mechanical system. In this summary we shall consider only mechanical systems, calling them just "systems" for short.

The forces acting on the particles or bodies of a system can be subdivided into external and internal forces.

External forces are defined as the forces exerted on the members of a system by particles or bodies not belonging to the given system. Internal forces are defined as the forces of interaction between the members of the same system. We shall denote external forces by the symbol \boldsymbol{F}^{e}, and internal forces by the symbol \boldsymbol{F}^{i}. Both external and internal forces can be either active forces or the reactions of constraints. The division of forces into external and internal is purely relative, and it depends on the extent of the system whose motion is being investigated. In considering the motion of
the solar system as a whole, for example, the gravitational attraction of the sun acting on the earth is an internal force; in investigating the earth's motion about the sun, the same force is external.

Internal forces possess the following properties:

1. The geometrical sum (the principal vector) of all the internal forces of a system is zero. This follows from the third law of

Fig. 22 dynamics, which states that any two particles of a system (Fig. 22) act on each other with equal and oppositely directed forces \boldsymbol{F}_{12}^{i} and \boldsymbol{F}_{21}^{i}, the sum of which is zero. Since the same is true for any pair of particles of a system, then

$$
\begin{equation*}
\boldsymbol{F}_{k}^{i}=0 \tag{4.1}
\end{equation*}
$$

2. The sum of the moments (the principal moment) of all the internal forces of a system with respect to any centre or axis is zero. For if we take an arbitrary centre 0 , it is apparent from Fig. 22 that $\boldsymbol{m}_{0}\left(\boldsymbol{F}_{12}^{i}\right)+\boldsymbol{m}_{0}\left(\boldsymbol{F}_{21}^{i}\right)=0$. The same result holds good for the moments about any axis. Hence, for the system as a whole we have

$$
\begin{equation*}
\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{i}\right)=0 \text { or } \sum m_{x}\left(\boldsymbol{F}_{k}^{i}\right)=0 . \tag{4.2}
\end{equation*}
$$

It does not follow from the above, however, that the internal forces are mutually balanced and do not affect the motion of the system, for they are applied to different particles or bodies and may cause their mutual displacement. The internal forces will be balanced only when a given system is a rigid body.

4.2. Mass of a System. Centre of Mass

The motion of a system depends, besides the acting forces, on its total mass and the distribution of this mass. The mass of a system is equal to the arithmetical sum of the masses of all the particles or bodies comprising it:

$$
\begin{equation*}
M=\sum m_{k} \tag{4.3}
\end{equation*}
$$

The distribution of mass is characterized primarily by the location of a point called the centre of mass. The centre of mass or centre of inertia, of a system is defined as a geometrical point C whose coordinates are given by the equations:

$$
\begin{equation*}
x_{c}=\frac{\sum m_{k} x_{k}}{M}, y_{c}=\frac{\sum m_{k} y_{k}}{M}, z_{c}=\frac{\sum m_{k} z_{k}}{M}, \tag{4.4}
\end{equation*}
$$

where m_{k} is the mass of a particle of the system, and x_{k}, y_{k}, z_{k} are its coordinates.
If the position of a centre of mass is defined by its radius vector \boldsymbol{r}_{c}, we can obtain from Eqs. (4.4) the following expression

$$
\begin{equation*}
\boldsymbol{r}_{c}=\frac{\sum m_{k} r_{k}}{M}, \tag{4.5}
\end{equation*}
$$

where \boldsymbol{r}_{k} is the radius vector of a particle of the system.
For a body in a uniform gravitational field, the centre of mass coincides with the centre of gravity. The concepts of centre of gravity and centre of mass, however, are not identical. The concept of centre of gravity, as the point through which the resultant of the forces of gravity passes, has meaning only for a rigid body in a uniform field of gravity. The concept of centre of mass, as a characteristic of the
distribution of mass in a system, on the other hand, has meaning for any system of particles or bodies, regardless of whether a given system is subjected to the action of forces or not.

4.3. Moment of Inertia of a Body about an Axis. Radius of Gyration

The position of centre of mass does not characterize completely the distribution of mass in a system. For if in the system in Fig. 23 the distance h of each of two identical spheres A and B from the axis $O z$ is increased by the same quantity, the

Fig. 23 location of the centre of mass will not change, though the distribution of mass will change and influence the motion of the system (all other conditions remaining the same, the rotation about axis Oz will be slower).

Accordingly, another characteristic of the distribution of mass, called the moment of inertia, is introduced in mechanics. The moment of inertia of a body with respect to a given axis $O z$ is defined as a scalar quantity equal to the sum of the masses of the particles of the body, each multiplied by the square of its perpendicular distance from the axis

$$
\begin{equation*}
J_{z}=\sum m_{k} h_{k}^{2} \tag{4.6}
\end{equation*}
$$

It will be shown further on that moment of inertia plays the same part in the rotational motion of a body as mass does in translational motion, i.e., moment of inertia is a measure of a body's inertia in rotational motion.

By Eq. (4.6), the moment of inertia of a body is equal to the sum of the moments of inertia of all its parts with respect to the same axis. For a material point located at a distance h from an axis, $J_{z}=m h^{2}$. The dimension of moment of inertia in the international system of units is $[J]=\mathrm{kg} \cdot \mathrm{m}^{2}$.

The concept of radius of gyration is often employed in calculations. The radius of gyration of a body with respect to an axis $O z$ is a linear quantity ρ defined by the equation

$$
J_{z}=M \rho^{2},
$$

where M is the mass of the body.
It follows from the definition that geometrically the radius of gyration is equal to the distance from the axis $O z$ to a point, such that if the mass of the whole body were concentrated in it the moment of inertia of the point would be equal to the moment of inertia of the whole body. Knowing the radius of gyration, we can obtain the moment of inertia of a body from Eq. (4.7) and vice versa.

4.4. Moments of Inertia of Some Homogeneous Bodies

If we divide a body into elements, in the limit the sum in Eq. (4.6) will become an integral and we obtain

$$
\begin{equation*}
J_{z}=\iiint h^{2} d m \tag{4.8}
\end{equation*}
$$

where the integration is over the whole volume of the body and depends on the coordinates of the points of the body. Eq. (4.8) is convenient in computing the moments of inertia of homogeneous bodies. Let us examine some examples.

1. Thin Homogeneous Rod of Length l and Mass M. Let us find its moment of inertia with respect to an axis $A z$ perpendicular to the rod (Fig. 24). If we lay off an axis $A x$ along $A B$, for any line element of length $d x$ we have $h=x$ and its mass $d m=\rho_{1} d x$, where $\rho_{1}=M / l$ is the mass of a unit length of the rod, and Eq. (4.8) gives:

$$
J_{A}=\int_{0}^{l} x^{2} d m=\rho_{1} \int_{0}^{l} x^{2} d x=\rho_{1} \frac{l^{3}}{3} .
$$

Substituting the expression for ρ_{1}, we obtain finally

$$
J_{A}=\frac{1}{3} M l^{3} .
$$

Fig. 24
2. Thin Circular Homogeneous Ring of Radius R and Mass M. Let us find its moment of inertia with respect to an axis $C z$ perpendicular to the plane of the ring

Fig. 25 through its centre (Fig. 25). As all the points of the ring are at a distance $h_{k}=R$ from axis $C z$, Eq. (4.6) gives

$$
J_{c}=\sum m_{k} R^{2}=\left(\sum m_{k}\right) R^{2}=M R^{2} .
$$

Hence, for the ring

$$
J_{c}=M R^{2} .
$$

It is evident that the same result is obtained for the moment of inertia of a cylindrical shell of mass M and radius R with respect to its axis.
3. Circular Homogeneous Disc or Cylinder of Radius R and Mass M. Let us compute the moment of inertia of a circular disc with respect to an axis Cz perpendicular to it through its centre (Fig. 26a). Consider an elemental ring of radius r and width $d r$. Its area is $2 \pi r d r$, and its mass $d m=\rho_{2} 2 \pi r d r$, where $\rho_{2}=\frac{M}{\pi R^{2}}$ is the mass of a unit area of the disc. From Eq.(4.8) we have for the elemental ring

$$
d J_{c}=r^{2} d m=2 \pi \rho_{2} r^{3} d r
$$

and for the whole disc

$$
J_{c}=2 \pi \rho_{2} \int_{0}^{R} r^{3} d r=\frac{1}{2} \pi \rho_{2} R^{4}
$$

Substituting the expression for ρ_{2} we obtain finally

Fig. 26

$$
J_{c}=\frac{1}{2} M R^{2} .
$$

It is evident that the same formula is obtained for the moment of inertia J_{z} of a homogeneous circular cylinder of mass M and radius R with respect to its axis Cz (Fig. 26b).

The moments of inertia of non-homogeneous and composite bodies can be determined experimentally with the help of appropriate instruments.

4.5. Moments of Inertia of a Body about Parallel Axes. The Parallel-Axis (Huygens') Theorem

In the most general case, the moments of inertia of the same body with respect to different axes are different. Let us see how to determine the moment of inertia of a body with respect to any axis if its moment of inertia with respect to a parallel axis through the body is known.

Draw an axis $C z$ through the centre of mass C of a body, and an axis $O z_{1}$ parallel to it (Fig.27), denoting the distance between the two axes by the symbol d. By definition we have

$$
J_{O z_{1}}=\sum m_{k} h_{k}^{2}, J_{C z}=\sum m_{k} h_{k}^{\prime 2}
$$

where h_{k} is the distance of an arbitrary point B of the body from axis $O z_{1}$, and h_{k}^{\prime} is

Fig. 27 the distance of the same point from axis $C z$, It follows from $\Delta B a e$ that

$$
h_{k}^{2}=h_{k}^{\prime 2}+d^{2}-2 d h_{k}^{\prime} \cos \alpha_{k}
$$

Let us draw from point C, as the origin of a coordinate system, axes x and y perpendicular to $C z$, such that x intersects with axis $O z_{1}$. It is evident that $C x \| a e$. Denoting the coordinates of point B as x_{k}, y_{k}, z_{k},we obtain
$h_{k}^{\prime} \cos \alpha_{k}=x_{k}$ and $h_{k}^{2}=h_{k}^{\prime 2}+d^{2}-2 d x_{k}$.
Substituting this expression of h_{k}^{2} into the expression for $J_{O z_{1}}$ and taking the common factors d^{2} and $2 d$ outside the summation signs, we have

$$
J_{O z_{1}}=\sum m_{k} h_{k}^{\prime 2}+\left(\sum m_{k}\right) d^{2}-2 d \sum m_{k} x_{k}
$$

The first summation in the right side of the equation is equal to $J_{C z}$ and the second to the mass M of the body. Let us find the value of the third summation. From Eq. (4.4) we know that, for the coordinates of the centre of mass, $\sum m_{k} x_{k}=M x_{C}$. But since in our case point C is the origin, $x_{c}=0$, and consequently $\sum m_{k} x_{k}=0$. We finally obtain

$$
\begin{equation*}
J_{O z_{1}}=J_{c z}+M d^{2} \tag{4.9}
\end{equation*}
$$

Eq. (4.9) expresses the parallel-axis theorem enunciated by Huygens:
the moment of inertia of a body with respect to any axis is equal to the moment of inertia of the body with respect to a parallel axis through the centre of mass of the body plus the product of the mass of the body and the square of the distance between the two axes.

It follows from Eq. (4.9) that $J_{O z_{1}}>J_{C z}$. Consequently, of all the axes of same direction, the moment of inertia is least with respect to the one through the centre of mass.

4.6. The Differential Equations of Motion of a System

Suppose we have a system of n particles. Choosing any particle of mass m_{k} belonging to the system, let us denote the resultant of all the external forces acting on the particle (both active forces and the forces of reaction) by the symbol \boldsymbol{F}_{k}^{e} and the resultant of all the internal forces by \boldsymbol{F}_{k}^{i}. If the particle has an acceleration \boldsymbol{a}_{k}, then, by the fundamental law of dynamics,

$$
m_{k} \boldsymbol{a}_{k}=\boldsymbol{F}_{k}^{e}+\boldsymbol{F}_{k}^{i} .
$$

Similar results are obtained for any other particle, whence, for the whole system, we have

$$
\left\{\begin{array}{c}
m_{1} \boldsymbol{a}_{1}=\boldsymbol{F}_{1}^{e}+\boldsymbol{F}_{1}^{i} \tag{4.10}\\
m_{2} \boldsymbol{a}_{2}=\boldsymbol{F}_{2}^{e}+\boldsymbol{F}_{2}^{i} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
m_{n} \boldsymbol{a}_{n}=\boldsymbol{F}_{n}^{e}+\boldsymbol{F}_{n}^{i}
\end{array}\right.
$$

These equations, from which we can develop the law of motion of any particle of the system, are called the differential equations of motion of a system in vector form. Eqs. (4.10) are differential because $\boldsymbol{a}_{k}=\frac{d v_{k}}{d t}=\frac{d^{2} r_{k}}{d t^{2}}$. In the most general case the forces in the right side of the equations depend on the time, the coordinates of the particles of the system, and their velocities.

By projecting Eqs. (4.10) on coordinate axes, we can obtain the differential equations of motion of a given system in terms of the projections on these axes.

The complete solution of the principal problem of dynamics for a system would be to develop the equation of motion for each particle of the system from the given forces by integrating the corresponding differential equations. For two reasons, however, this solution is not usually employed.

Firstly, the solution is too involved and will almost inevitably lead into insurmountable mathematical difficulties.

Secondly, in solving problems of mechanics it is usually sufficient to know certain overall characteristics of the motion of a system without investigating the motion of each particle. These overall characteristics can be found with the help of the general theorems of systems dynamics, which we shall now study.

The main application of Eqs.(4.10) or their corollaries will be to develop the respective general theorems.

5. GENERAL THEOREMS OF DYNAMICS

In solving many problems of dynamics it will be found that the so-called general theorems, representing corollaries of the fundamental law of dynamics, are more conveniently applied than the method of integration of differential equations of motion.

The importance of the general theorems is that they establish visual relationships between the principal dynamic characteristics of motion of material bodies, thereby presenting broad possibilities for analyzing the mechanical motion widely employed in practical engineering. Furthermore, the general theorems make it possible to study for practical purposes specific aspects of a given phenomenon without investigating the phenomenon as a whole. Finally, the use of the general theorems makes it unnecessary to carry out for every problem the operations of integration performed once and for all in proving the theorems, which simplifies the solution.

5.1. Momentum of a Particle and a System

One of the basic dynamic characteristics of particle motion is momentum (or linear momentum).

The momentum of a particle is defined as a vector quantity mvequal to the product of the mass of the particle and its velocity. The vector $m \boldsymbol{v}$ is directed in the same direction as the velocity, i.e., tangent to the path of the particle.

The linear momentum, or simply the momentum, of a system is defined as the vector quantity \boldsymbol{Q} equal to the geometric sum (the principal vector) of the moments of all the particles of the system (Fig 28):

$$
\begin{equation*}
\boldsymbol{Q}=\sum m_{k} \boldsymbol{v}_{k} \tag{5.1}
\end{equation*}
$$

It can be seen from the diagram that, irrespective of the velocities of the particles (provided that they are not

Fig. 28 parallel) the momentum vector can take any value, or even be zero when the polygon constructed with the vectors $m_{k} \boldsymbol{v}_{k}$ as its sides is closed. Consequently, the quantity \boldsymbol{Q} does not characterize the motion of the system completely. Let us develop a formula with which it is much more convenient to compute \boldsymbol{Q} and also to explain its meaning. It follows from Eq. (4.5) that

$$
\sum m_{k} \boldsymbol{r}_{k}=M \boldsymbol{r}_{C}
$$

Differentiating both sides with respect to time, we obtain

$$
\sum m_{k} \frac{d \boldsymbol{r}_{k}}{d t}=M \frac{d \boldsymbol{r}_{C}}{d t} \text { or } \sum m_{k} \boldsymbol{v}_{k}=M \boldsymbol{v}_{C}
$$

whence we find that

$$
\begin{equation*}
\boldsymbol{Q}=M \boldsymbol{v}_{C}, \tag{5.2}
\end{equation*}
$$

i.e., the momentum of a system is equal to the product of the mass of the whole system and the velocity of its center of mass. This equation is especially convenient in computing the momentum of rigid bodies.

It follows from Eq. (5.2) that, if the motion of a body (or a system) is such that the center of mass remains motionless, the momentum of the body is zero. Thus, the momentum of a body rotating about a fixed axis through its center of mass is zero (the polygon in Fig. 28 is closed).

If, on the other hand, a body has relative motion, the quantity \boldsymbol{Q} will not characterize the rotational component of the motion about the center of mass. Thus, for a rolling wheel, $\boldsymbol{Q}=M \boldsymbol{v}_{c}$, regardless of how the wheel rotates about its center of mass C.

We see, therefore, that momentum characterizes only the translational motion of a system, which is why it is often called linear momentum. In relative motion, the quantity \boldsymbol{Q} characterizes only the translational component of the motion of a system together with its center of mass.

5.2. Impulse of a Force

The concept of impulse (or linear impulse) of a force is used to characterize the effect on a body of a force acting during a certain interval of time. First let us introduce the concept of elementary impulse, i.e., impulse in an infinitesimal time interval $d t$. Elementary impulse is defined as a vector quantity $d \boldsymbol{S}$ equal to the product of the vector of the force \boldsymbol{F} and the time element $d t$:

$$
d \boldsymbol{S}=\boldsymbol{F} d t .
$$

The elementary impulse is directed along the action line of the force. The impulse \boldsymbol{S} of any force \boldsymbol{F} during a finite time interval t_{l} is computed as the integral sum of the respective elementary impulses:

$$
\begin{equation*}
\boldsymbol{S}=\int_{0}^{t_{1}} \boldsymbol{F} d t \tag{5.3}
\end{equation*}
$$

Thus, the impulse of a force in any time interval t_{l} is equal to the integral of the elementary impulse over the interval from zero to t_{l}.

In the special case when the force \boldsymbol{F} is of constant magnitude and direction ($\boldsymbol{F}=$ const.. , we have $\boldsymbol{S}=\boldsymbol{F} t_{1}$. In the general case the magnitude of an impulse can be computed from its projections. We can find the projections of an impulse on a set of coordinate axes if we remember that an integral is the limit of a sum, and the projection of a vector sum on an axis is equal to the sum of the projections of the component vectors on the same axis. Hence,

$$
S_{x}=\int_{0}^{t_{1}} F_{x} d t, S_{y}=\int_{0}^{t_{1}} F_{y} d t, S_{z}=\int_{0}^{t_{1}} F_{z} d t .
$$

With these projections we can construct the vector \boldsymbol{S} and find its magnitude and the angles it makes with the coordinate axes. The dimension of impulse in the
international system of units is $[S]=N \cdot$ sec.
To solve the principal problem of dynamics, it is important to establish the forces whose impulses can be computed without knowing the equation of motion of the particle moving under the action of those forces. It is apparent that to these forces belong only constant forces and forces depending on time.

5.3. Theorem of the Motion of Center of Mass

In many cases the nature of the motion of a system (especially of a rigid body) is completely described by the law of motion of its center of mass. To develop this law, let us take the equations of motion of a system (4.10) and add separately their left and right sides. We obtain

$$
\begin{equation*}
\sum m_{k} \boldsymbol{a}_{k}=\sum \boldsymbol{F}_{k}^{e}+\sum \boldsymbol{F}_{k}^{i} . \tag{5.4}
\end{equation*}
$$

Let us transform the left side of the equation. For the radius vector of the center of mass we have

$$
\sum m_{k} \boldsymbol{r}_{k}=M \boldsymbol{r}_{C} .
$$

Taking the second derivative of both sides of this equation with respect to time, and noting that the derivative of a sum equals the sum of the derivatives, we find

$$
\sum m_{k} \frac{d^{2} \boldsymbol{r}_{k}}{d t^{2}}=M \frac{d^{2} \boldsymbol{r}_{k}}{d t^{2}}
$$

or

$$
\sum m_{k} \boldsymbol{a}_{k}=M \boldsymbol{a}_{C},
$$

where \boldsymbol{a}_{c} is the acceleration of the center of mass of the system. As the internal forces of a system give $\sum \boldsymbol{F}_{k}^{i}=0$, by substituting all the developed expressions into Eq. (5.4), we obtain finally:

$$
\begin{equation*}
M \boldsymbol{a}_{c}=\sum \boldsymbol{F}_{k}^{e} . \tag{5.5}
\end{equation*}
$$

Eq. (5.5) states the theorem of the motion of the center of mass of a system. Its form coincides with that of the equation of motion of a particle of mass $m=M$ where the acting forces are equal to \boldsymbol{F}_{k}^{e}. We can therefore formulate the theorem of the motion of the centre of mass as follows: the center of mass of a system moves as if it were a particle of mass equal to the mass of the whole system to which are applied all the external forces acting on the system. Projecting both sides of Eq. (5.5) on the coordinate axes, we obtain

$$
\begin{equation*}
M \frac{d^{2} x_{c}}{d t^{2}}=\sum F_{k x}^{e}, M \frac{d^{2} y_{c}}{d t^{2}}=\sum F_{k y}^{e}, M \frac{d^{2} z_{c}}{d t^{2}}=\sum F_{k z}^{e} . \tag{5.6}
\end{equation*}
$$

These are the differential equations of motion of the center of mass in terms of the projections on the coordinate axes. The theorem is valuable for the following reasons:

1) It justifies the use of the methods of particle dynamics. It follows from Eqs. (5.6) that the solutions developed on the assumption that a given body is equivalent to a particle define the law of motion of the center of mass of that body. Thus, these solutions have a concrete meaning. In particular, if a body is being translated, its motion is completely specified by the motion of its center of mass, and consequently, a body in translational motion can always be treated as a particle of mass equal to the
mass of the body. In all other cases, a body can be treated as a particle only when the position of its center of mass is sufficient to specify the position of the body.
2) The theorem makes it possible, in developing the equation of motion for the centre of mass of any system, to ignore all unknown internal forces. This is of special practical value.

5.4. The Law of Conservation of Motion of Center of Mass

The following important corollaries arise from the theorem of the motion of center of mass:

1) Let the sum of the external forces acting on a system be zero:

$$
\sum \boldsymbol{F}_{k}^{e}=0 .
$$

It follows, then, from Eq. (5.5) that $\boldsymbol{a}_{c}=0$ or $\boldsymbol{v}_{c}=$ const. Thus, if the sum of all the external forces acting on a system is zero, the center of mass of that system moves with a velocity of constant magnitude and direction, i.e., uniformly and rectilinearly. In particular, if the center of mass was initially at rest it will remain at rest. The action of the internal forces, we see, does not affect the motion of the center of mass.
2) Let the sum of the external forces acting on a system be other than zero, but let the sum of their projections on one of the coordinate axes (the x - axis, for instance), be zero:

$$
\sum F_{k x}^{e}=0
$$

The first of Eqs. (5.6), then, gives

$$
\frac{d^{2} x_{c}}{d t^{2}}=0 \text { or } \frac{d x_{c}}{d t}=v_{c_{x}}=\text { const. }
$$

Thus, if the sum of the projections on an axis of all the external forces acting on a system is zero, the projection of the velocity of the center of mass of the system on that axis is a constant quantity. In particular, if at the initial moment $v_{c_{x}}=0$, it will remain zero at any subsequent instant, i.e., the center of mass of the system will not move along the x-axis ($x_{C}=$ const.).

The above results express the law of conservation of motion of the center of mass of a system.

5.5. Theorem of the Change in the Momentum of a Particle

As the mass of a particle is constant, and its acceleration $\boldsymbol{a}=\frac{d v}{d t}$ equation, which expresses the fundamental law of dynamics, can be expressed in the form:

$$
\begin{equation*}
\frac{d(m v)}{d t}=\sum \boldsymbol{F}_{k} . \tag{5.7}
\end{equation*}
$$

Let a particle of mass m moving under the action of a force $\boldsymbol{R}=\sum \boldsymbol{F}_{k}$ have a velocity \boldsymbol{v}_{0} at time $t=0$, and at time t_{l} let its velocity be \boldsymbol{v}_{1}. Now let us multiply both sides of Eq. (5.7) by $d t$ and take definite integrals. On the right side, where we integrate with respect to time, the limits of the integrals are zero and t_{l}; on the left side, where we integrate the velocity, the limits of the integral are the respective
values of \boldsymbol{v}_{0} and \boldsymbol{v}_{1}. As the integral of $d(\boldsymbol{m} \boldsymbol{v})$ is $m \boldsymbol{v}$, we have

$$
m \boldsymbol{v}_{1}-m \boldsymbol{v}_{0}=\sum \int_{0}^{t_{1}} \boldsymbol{F}_{k} d t
$$

By Eq. (5.3), the integrals on the right side are the impulses of the acting forces. Hence, we finally have

$$
\begin{equation*}
m \boldsymbol{v}_{1}-m \boldsymbol{v}_{0}=\sum \boldsymbol{S}_{k} . \tag{5.8}
\end{equation*}
$$

Eq. (5.8) states the theorem of the change in the linear momentum of a particle: the change in the momentum of a particle during any time interval is equal to the geometric sum of the impulses of all the forces acting on the particle during that interval of time.

In problem solutions, projection equations are often used instead of the vector equation (5.8). Projecting both sides of Eq. (5.8) on a set of coordinate axes, we have

$$
\left.\begin{array}{rl}
m v_{1 x}-m v_{0 x} & =\sum S_{k x} \tag{5.8'}\\
m v_{1 y}-m v_{0 y} & =\sum S_{k y} \\
m v_{1 z}-m v_{0 z} & =\sum S_{k z}
\end{array}\right\}
$$

In the case of rectilinear motion along the x-axis, the theorem is stated by the first of these equations.

5.6. Theorem of the Change in Linear Momentum of the System

Consider a system of n particles. Writing the differential equations of motion (4.10) for this system and adding them, we obtain

$$
\sum m_{k} \boldsymbol{a}_{k}=\sum \boldsymbol{F}_{k}^{e}+\sum \boldsymbol{F}_{k}^{i} .
$$

From the property of internal forces the last summation is zero. Furthermore,

$$
\sum m_{k} \boldsymbol{a}_{k}=\frac{d}{d t}\left(\sum m_{k} \boldsymbol{v}_{k}\right)=\frac{d \boldsymbol{Q}}{d t},
$$

and we finally have

$$
\begin{equation*}
\frac{d \boldsymbol{Q}}{d t}=\sum \boldsymbol{F}_{k}^{e} . \tag{5.9}
\end{equation*}
$$

Eq. (5.9) states the theorem of the change in the linear momentum of a system in differential form: the derivative of the linear momentum of a system with respect to time is equal to the geometrical sum of all the external forces acting on the system. In terms of projections on Cartesian axes we have

$$
\begin{equation*}
\frac{d Q_{x}}{d t}=\sum F_{k x}^{e}, \frac{d Q_{y}}{d t}=\sum F_{k y}^{e}, \frac{d Q_{z}}{d t}=\sum F_{k z}^{e} . \tag{5.10}
\end{equation*}
$$

Let us develop another expression for the theorem. Let the momentum of a system be \boldsymbol{Q}_{0} at time $t=0$, and at time t_{l} let it be \boldsymbol{Q}_{1}. Multiplying both sides of Eq. (5.9) by $d t$ and integrating, we obtain

$$
\boldsymbol{Q}_{1}-\boldsymbol{Q}_{0}=\sum \int_{0}^{t_{1}} \boldsymbol{F}_{k}^{e} d t
$$

or

$$
\begin{equation*}
\boldsymbol{Q}_{1}-\boldsymbol{Q}_{0}=\sum \boldsymbol{S}_{k}^{e}, \tag{5.11}
\end{equation*}
$$

as the integrals to the right give the impulses of the external forces. Eq. (5.11) states the theorem of the change in the linear momentum of a system in integral form: the change in the linear momentum of a system during any time interval is equal to the
sum of the impulses of the external forces acting on the system during the same interval of time. In terms of projections on Cartesian axes we have

$$
\left.\begin{array}{rl}
Q_{1 x}-Q_{0 x} & =\sum S_{k x}^{e} \tag{5.11'}\\
Q_{1 y}-Q_{0 y} & =\sum S_{k y}^{e} \\
Q_{1 z}-Q_{0 z} & =\sum S_{k z}^{e}
\end{array}\right\}
$$

Let us show the connection between this theorem and the theorem of the motion of center of mass. As $\boldsymbol{Q}=M \boldsymbol{v}_{c}$, by substituting this expression into Eq. (5.9) and taking into account that $\frac{d v_{c}}{d t}=\boldsymbol{a}_{c}$ we obtain $M \boldsymbol{a}_{c}=\sum \boldsymbol{F}_{k}^{e}$, i.e., Eq. (5.5).

Consequently, the theorem of the motion of center of mass and the theorem of the change in the momentum of a system are, in fact, two forms of the same theorem. Whenever the motion of a rigid body (or system of bodies) is being investigated, both theorems may be used, though Eq. (5.5) is usually more convenient.

For a continuous medium (a fluid), however, the concept of center of mass of the whole system is virtually meaningless, and the theorem of the change in the momentum of a system is used in the solution of such problems.

The practical value of the theorem is that it enables us to exclude from consideration the immediately unknown internal forces (for instance, the reciprocal forces acting between the particles of a liquid).

5.7. The Law of Conservation of Linear Momentum

The following important corollaries arise from the theorem of the change in the momentum of a system:

1) Let the sum of all the external forces acting on a system be zero:

$$
\sum \boldsymbol{F}_{k}^{e}=0 .
$$

It follows from Eq. (5.9) that in this case $\boldsymbol{Q}=$ const. Thus, if the sum of all the external forces acting on a system is zero, the momentum vector of the system is constant in magnitude and direction.
2) Let the external forces acting on a system be such that the sum of their projections on any axis $O x$ is zero:

$$
\sum F_{k x}^{e}=0 .
$$

It follows from Eqs. (5.10) that in this case $Q_{x}=$ const. Thus, if the sum of the projections on any axis of all the external forces acting on a system is zero, the projection of the momentum of that system on that axis is a constant quantity.

These results express the law of conservation of the linear momentum of a system.

5.8. Theorem of the Change in the Angular Momentum of a Particle

Often, in analyzing the motion of a particle, it is necessary to consider the change not of the vector $m v$ itself, but of its moment. The moment of the vector $m v$ with respect to any center 0 or axis z is denoted by the symbol $\boldsymbol{m}_{0}(m \boldsymbol{v})$ or $m_{z}(m \boldsymbol{v})$
and is called the moment of momentum or angular momentum with respect to that center or axis. The moment of vector $m \boldsymbol{v}$ is calculated in the same way as the moment of a force. Vector $m v$ is considered to be applied to the moving particle. In magnitude $\left|\boldsymbol{m}_{0}(m \boldsymbol{v})\right|=m v h$, where h is the perpendicular distance from 0 to the position line of the vector $m \boldsymbol{v}$ (see Fig. 29).

1. Principle of Moments About an Axis. Consider a particle of mass moving under the action of a force \boldsymbol{F}. Let us establish the dependence between the moments

Fig. 29 of the vectors $m \boldsymbol{v}$ and \boldsymbol{F} with respect to any fixed axis z.

It is well known that

$$
\begin{equation*}
m_{z}(\boldsymbol{F})=x F_{y}-y F_{x} \tag{5.12}
\end{equation*}
$$

Similarly, for $m_{z}(m v)$, and taking m out of the parentheses, we have

$$
\begin{equation*}
m_{z}(m \boldsymbol{v})=m\left(x v_{y}-y v_{x}\right) \tag{5.13}
\end{equation*}
$$

Differentiating both sides of this equation with respect to time, we obtain

$$
\frac{d}{d t}\left[m_{z}(m v)\right]=m\left(\frac{d x}{d t} v_{y}-\frac{d y}{d t} v_{x}\right)+
$$

$$
\left(x m \frac{d v_{y}}{d t}-y m \frac{d v_{x}}{d t}\right)
$$

The expression in the first parentheses of the right side of the equation is zero, as $\frac{d x}{d t}=v_{x}$ and $\frac{d y}{d t}=v_{y}$. From Eq. (5.12), the expression in the second pair of parentheses is equal to $m_{z}(\boldsymbol{F})$, since, from the fundamental law of dynamics,

$$
m \frac{d v_{x}}{d t}=F_{x}, m \frac{d v_{y}}{d t}=F_{y} .
$$

Finally, we have

$$
\begin{equation*}
\frac{d}{d t}\left[m_{z}(m \boldsymbol{v})\right]=m_{z}(\boldsymbol{F}) \tag{5.14}
\end{equation*}
$$

This equation states the principle of moments about an axis: the derivative of the angular momentum of a particle about any axis with respect to time is equal to the moment of the acting force about the same axis
2. Principle of Moments about a Center. Let us find for a particle moving under the action of a force \boldsymbol{F} (Fig. 29) the relation between the moments of vectors $m \boldsymbol{v}$ and \boldsymbol{F} with respect to any fixed center 0 . It was shown that $\boldsymbol{m}_{0}(\boldsymbol{F})=\boldsymbol{r} \times \boldsymbol{F}$. Similarly,

$$
\boldsymbol{m}_{0}(m \boldsymbol{v})=\boldsymbol{r} \times m \boldsymbol{v}
$$

Vector $\boldsymbol{m}_{0}(\boldsymbol{F})$ is normal to the plane through 0 and vector \boldsymbol{F}, while the vector $\boldsymbol{m}_{0}(m \boldsymbol{v})$ is normal to the plane through the center 0 and vector $\boldsymbol{m} \boldsymbol{v}$. Differentiating the expression $\boldsymbol{m}_{0}(m \boldsymbol{v})$ with respect to time, we obtain

$$
\frac{d}{d t}(\boldsymbol{r} \times m \boldsymbol{v})=\left(\frac{d r}{d t} \times m \boldsymbol{v}\right)+\left(\boldsymbol{r} \times m \frac{d v}{d t}\right)=(\boldsymbol{v} \times m \boldsymbol{v})+(\boldsymbol{r} \times m \boldsymbol{a})
$$

But $\boldsymbol{v} \times m \boldsymbol{v}=0$, as the vector product of two parallel vectors, and $m \boldsymbol{a}=\boldsymbol{F}$. Hence,

$$
\begin{equation*}
\frac{d}{d t}(\boldsymbol{r} \times m \boldsymbol{v})=\boldsymbol{r} \times \boldsymbol{F}, \text { or } \frac{d}{d t}\left[\boldsymbol{m}_{0}(m \boldsymbol{v})\right]=\boldsymbol{m}_{0}(\boldsymbol{F}) \tag{5.15}
\end{equation*}
$$

This is the principle of moments about a center: the derivative of the angular momentum of a particle about any fixed center with respect to time is equal to the moment of the force acting on the particle about the same center. An analogous theorem is true for the moments of vector $m \boldsymbol{v}$ and force \boldsymbol{F} with respect to any axis z, which is evident if we project both sides of Eq. (5.15) on that axis. This was proved directly in item 1.

5.9. Total Angular Momentum of a System

The total angular momentum of a system with respect to any center 0 is defined as the quantity \boldsymbol{K}_{0}, equal to the geometrical sum of the angular momenta of all the particles of the system with respect to that center:

$$
\begin{equation*}
\boldsymbol{K}_{0}=\sum \boldsymbol{m}_{0}\left(m_{k} \boldsymbol{v}_{k}\right) \tag{5.16}
\end{equation*}
$$

The angular moment of a system with respect to each of three rectangular coordinate axes are found similarly:

$$
\begin{equation*}
K_{x}=\sum m_{x}\left(m_{k} \boldsymbol{v}_{k}\right), K_{y}=\sum m_{y}\left(m_{k} \boldsymbol{v}_{k}\right), K_{z}=\sum m_{z}\left(m_{k} \boldsymbol{v}_{k}\right) \tag{5.17}
\end{equation*}
$$

By the theorem proved in $\S 5.8, K_{x}, K_{y}, K_{z}$ are the respective projections of vector \boldsymbol{K}_{0} on the coordinate axes.

To understand the physical meaning of $\boldsymbol{K}_{\mathbf{0}}$, let us compute the angular

Fig. 30 momentum of a rotating body with respect to its axis of rotation. If a body rotates about a fixed axis Oz (Fig. 30), the linear velocity of any particle of the body at a distance h_{k} from the axis is ωh_{k}. Consequently, for that particle

$$
m_{z}\left(m_{k} \boldsymbol{v}_{k}\right)=m_{k} v_{k} h_{k}=m_{k} \omega h_{k}^{2}
$$

Then, taking the common multiplier ω outside of the parentheses, we obtain for the whole body

$$
K_{z}=\sum m_{z}\left(m_{k} \boldsymbol{v}_{k}\right)=\left(\sum m_{k} h_{k}^{2}\right) \omega
$$

The quantity in the parentheses is the moment of inertia of the body with respect to the z - axis (§ 4.3). We finally obtain

$$
\begin{equation*}
K_{z}=J_{z} \omega . \tag{5.18}
\end{equation*}
$$

Thus, the angular momentum of a rotating body with respect to the axis of rotation is equal to the product of the moment of inertia of the body and its angular velocity.

If a system consists of several bodies rotating about the same axis, then, apparently,

$$
K_{z}=J_{1 z} \omega_{1}+J_{2 z} \omega_{2}+\ldots+J_{n z} \omega_{n}
$$

The analogy between Eqs. (5.2) and (5.18) will be readily noticed: the momentum of a body is the product of its mass (the quantity characterizing the body's inertia in translational motion) and its velocity; the angular momentum of a body is equal to the product of its moment of inertia (the quantity characterizing a body's inertia in rotational motion) and its angular velocity.

Just as the momentum of a system is a characteristic of its translational motion,
the total angular momentum of a system is a characteristic of its rotational motion.

5.10. Theorem of the Change in the Total Angular Momentum of a System

The principle of moments, which was proved for a single particle (§ 5.8), is valid for all the particles of a system. If, therefore, we consider a particle of mass m_{k} and velocity \boldsymbol{v}_{k} belonging to a system, we have for that particle

$$
\frac{d}{d t}\left[\boldsymbol{m}_{0}\left(m_{k} \boldsymbol{v}_{k}\right)\right]=\boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e}\right)+\boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{i}\right) .
$$

where \boldsymbol{F}_{k}^{e} and \boldsymbol{F}_{k}^{i} are the resultants of all the external and internal forces acting on the particle.

Writing such equations for all the particles of the system and adding them, we obtain

$$
\frac{d}{d t} \sum\left[\boldsymbol{m}_{0}\left(m_{k} \boldsymbol{v}_{k}\right)\right]=\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e}\right)+\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{i}\right) .
$$

But from the properties of the internal forces of a system, the last summation vanishes. Hence, taking into account Eq. (5.16), we obtain finally

$$
\begin{equation*}
\frac{d \boldsymbol{K}_{0}}{d t}=\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e}\right) . \tag{5.19}
\end{equation*}
$$

This equation states the following principle of moments for a system: The derivative of the total angular momentum of a system about any fixed center with respect to time is equal to the sum of the moments of all the external forces acting on that system about that center.

Projecting both sides of Eq. (5.19) on a set of fixed axes $O x y z$, we obtain

$$
\begin{equation*}
\frac{d K_{x}}{d t}=\sum m_{x}\left(\boldsymbol{F}_{k}^{e}\right), \frac{d K_{y}}{d t}=\sum m_{y}\left(\boldsymbol{F}_{k}^{e}\right), \frac{d K_{z}}{d t}=\sum m_{z}\left(\boldsymbol{F}_{k}^{e}\right) . \tag{5.20}
\end{equation*}
$$

5.11. The Law of Conservation of the Total Angular Momentum

The following important corollaries can be derived from the principle of moments.

1) Let the sum of the moments of all the external forces acting on a system with respect to a center 0 be zero:

$$
\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e}\right)=0
$$

It follows, then, from Eq. (5.19) that $\boldsymbol{K}_{0}=$ const. Thus, if the sum of the moments of all external forces acting on a system taken with respect to any center is zero, the total angular momentum of the system with respect to that center is constant in magnitude and direction.
2) Let the external forces acting on a system be such that the sum of their moments with respect to any fixed axis $O z$ is zero:

$$
\sum m_{z}\left(\boldsymbol{F}_{k}^{e}\right)=0
$$

It follows, then, from Eqs. (5.20) that $K_{z}=$ const. Thus, if the sum of the moments of all the external forces acting on a system with respect to any axis is zero,
the total angular momentum of the system with respect to that axis is constant.
These conclusions express the law of conservation of the total angular momentum of a system. It follows from them that internal forces cannot change the total angular momentum of a system.

5.12. Kinetic Energy of Particle and a System

The kinetic energy of a particle is a scalar quantity equal $\frac{1}{2} m v^{2}$. The kinetic energy of a system is defined as a scalar quantity T equal to the arithmetical sum of the kinetic energies of all the particles of the system:

$$
\begin{equation*}
T=\sum \frac{m_{k} v_{k}^{2}}{2} . \tag{5.21}
\end{equation*}
$$

If a system consists of several bodies, its kinetic energy is, evidently, equal to the sum of the kinetic energies of all the bodies:

$$
T=\sum T_{k} .
$$

Let us develop the equations for computing the kinetic energy of a body in different types of motion.

Translational Motion. In this case all the points of a body have the same velocity, which is equal to the velocity of the centre of mass. Therefore, for any point $v_{k}=v_{c}$, and Eq. (5.21) gives

$$
\begin{gather*}
T_{\text {trans }}=\sum \frac{m_{k} v_{k}^{2}}{2}=\frac{1}{2}\left(\sum m_{k}\right) v_{c}^{2} \\
T_{\text {trans }}=\frac{1}{2} M v_{c}^{2} . \tag{5.22}
\end{gather*}
$$

Rotational Motion. The velocity of any point of a body rotating about an axis Oz is $v_{k}=\omega h_{k}$, where h_{k} is the distance of the point from the axis of rotation, and ω is the angular velocity of the body. Substituting this expression into Eq. (5.21) and taking the common multipliers outside the parentheses we obtain

$$
T_{\text {rotation }}=\sum \frac{m_{k} \omega^{2} h_{k}^{2}}{2}=\frac{1}{2}\left(\sum m_{k} h_{k}^{2}\right) \omega^{2} .
$$

The term in the parentheses is the moment of inertia of the body with respect to the axis z. Thus we finally obtain

$$
\begin{equation*}
T_{\text {rotaion }}=\frac{1}{2} J_{z} \omega^{2} \tag{5.23}
\end{equation*}
$$

Fig. 31

Plane Motion. In plane motion, the velocities of all the points of a body are at any instant directed as if the body were rotating about an axis perpendicular to the plane of motion and passing through the instantaneous centre of zero velocity P (Fig. 31). Hence, by Eq. (5.23)

$$
T_{\text {plane }}=\frac{1}{2} J_{p} \omega^{2} .
$$

where J_{p} is the moment of inertia of the body with respect to the instantaneous axis of rotation.

The quantity J_{p} is variable, as the position of the centre P continuously changes with the motion of the body. Let us introduce instead of J_{p} a constant moment of inertia J_{c} with respect to an axis through the centre of mass C of the body. By the parallel-axis theorem, $J_{p}=J_{c}+M d^{2}$, where $d=P C$.

Substituting this expression for J_{p} and taking into account that point P is the instantaneous centre of zero velocity and therefore $\omega d=\omega P C=v_{c}$, where v_{c} is the velocity of the centre of mass, we obtain finally

$$
\begin{equation*}
T_{\text {plane }}=\frac{1}{2} M v_{c}^{2}+\frac{1}{2} J_{c} \omega^{2} . \tag{5.24}
\end{equation*}
$$

5.13. Work Done by a Force. Power

The concept of work is introduced as a measure of the action of a force on a body in a given displacement, specifically that action which is represented by the change in the magnitude of the velocity of a moving particle.
First let us introduce the concept of elementary work done by a force in infinitesimal displacement $d s$. The elementary work done by a force \boldsymbol{F} (Fig. 32) is defined as a scalar quantity

$$
\begin{equation*}
d A=F_{\tau} d s \tag{5.25}
\end{equation*}
$$

where F_{τ} is the projection of the force on the tangent to the path in the direction of the displacement, and $d s$ is an infinitesimal displacement of the particle along that tangent.

This definition corresponds to the concept of work as a characteristic of that action of a force which tends to change the magnitude of velocity. For if force \boldsymbol{F} is resolved into components \boldsymbol{F}_{τ} and \boldsymbol{F}_{n}, only the component \boldsymbol{F}_{τ}, which imparts the particle its tangential acceleration, will change the magnitude of the velocity. Noting that $F_{\tau}=F \cos \alpha$, we further

Fig. 32 obtain from Eq. (5.25)

$$
\begin{equation*}
d A=F d s \cos \alpha \tag{5.26}
\end{equation*}
$$

If angle α is acute, the work is of positive sense. In particular, at $\alpha=0$, the elementary work $d A=F d s$.

If angle α is obtuse, the work is of negative sense. In particular, at $\alpha=180^{\circ}$, the elementary work $d A=-F d s$.

If angle $\alpha=90^{\circ}$, i.e., if a force is directed perpendicular to the displacement, the elementary work done by the force is zero.

Let us now find an analytical expression for elementary work. For this we resolve force F into components F_{x}, F_{y}, F_{z}, parallel to the coordinate axes (Fig. 33). The infinitesimal displacement $M M^{\prime}=d s$ is compounded of the displacements $d x, d y$, $d z$ parallel to the coordinate axes, where x, y, z are the coordinates of point M. The work done by force F in the displacement $d s$ can be calculated as the sum of the work
done by its components F_{x}, F_{z}, F_{z} in the displacements $d x, d y, d z$.

Fig. 33 But the work in the displacement $d x$ is done only by component F_{x} and is equal to $F_{x} d x$. The work in the displacements $d y$ and $d z$ is calculated similarly. Thus, we finally obtain

$$
\begin{equation*}
d A=F_{x} d x+F_{y} d y+F_{z} d z \tag{5.27}
\end{equation*}
$$

Eq. (5.27) gives the analytical expression of the elementary work done by a force.

The work done by a force in any finite displacement $M_{0} M_{1}$ (see Fig. 32) is calculated as the integral sum of the corresponding elementary works and is equal to

$$
\begin{gather*}
A_{\left(M_{0} M_{1}\right)}=\int_{\left(M_{0}\right)}^{\left(M_{1}\right)} F_{\tau} d s \tag{5.28}\\
A_{\left(M_{0} M_{1}\right)}=\int_{\left(M_{0}\right)}^{\left(M_{1}\right)}\left(F_{x} d x+F_{y} d y+F_{z} d z\right) \tag{5.29}
\end{gather*}
$$

The limits of the integral correspond to the values of the variables of integration at points M_{0} and M_{1}, (or, more exactly, the integral is taken along the curve $M_{1} M_{0}$, i.e., it is curvilinear).

In order to solve the principal problem of dynamics, it is important to establish the forces whose work can be calculated immediately without knowing the equation of motion of the particle on which they are acting. It can be seen that to these forces belong only constant forces or forces which depend on the position (coordinates) of a moving particle.

Power. The term power is defined as the work done by a force in a unit of time (the time rate of doing work). If work is done at a constant rate, the power

$$
N=\frac{A}{t_{1}}
$$

where t_{1} is the time in which the work A is done. In the general case,

$$
N=\frac{d A}{d t}=\frac{F_{\tau} d s}{d t}=F_{\tau} v
$$

It can be seen from the equation $N=F_{\tau} v$ that if a motor has a given power N, the tractive force F_{τ} is inversely proportional to the velocity v. That is why, for instance, on an upgrade or poor road a motor car goes into lower gear, thereby reducing the speed and developing a greater tractive force with the same power.

5.14. Examples of Calculation of Work

The examples considered below give results which can be used immediately in solving problems.

Work Done by a Gravitational Force. Let a particle M subjected to a gravitational force \boldsymbol{P} be moving from a point $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$ to a point $M_{1}\left(x_{1}, y_{l}, z_{l}\right)$. Choose a coordinate system so that the axis $O z$ would point vertically up (Fig. 34). Then $P_{x}=0, P_{y}=0, P_{z}=-P$. Substituting these expressions into Eq. (5.29) and taking into account that the integration variable is z, we obtain

$$
A_{\left(M_{0} M_{1}\right)}=\int_{\left(M_{0}\right)}^{\left(M_{1}\right)}(-P d z)=-P \int_{z_{0}}^{z_{1}} d z=P\left(z_{0}-z_{1}\right) .
$$

If point M_{0} is higher than M_{1} then $z_{0}-z_{1}=h$, where h is the vertical

Fig. 34 displacement of the particle; if, on the other hand, M_{0} is below M_{1} then $z_{0}-z_{1}=$ $-\left(z_{1}-z_{0}\right)=-h$. Finally we have

$$
A_{\left(M_{0} M_{1}\right)}= \pm P h .
$$

The work is positive if the initial point is higher than the final one and negative if it is lower.

It follows from this that the work done by gravity does not depend on the path along which the point of its application moves. Forces possessing this property are called
conservative forces.
Work Done by an Elastic Force. Consider a weight M lying in a horizontal plane and attached to the free end of a spring (Fig. 35). Let point O on the plane represent the position of the end of the spring when it is not in tension ($A O=l_{0}$ is the length of the unextended spring) and let it be the origin of our coordinate system.

Now if we draw the weight from its position of equilibrium 0 , stretching the spring to length l, acting on the weight will be the elastic force of the spring \boldsymbol{F} directed towards 0 . According to Hooke's Law, the magnitude

Fig. 35 of this force is proportional to the extension of the spring $\Delta l=l-l_{0}$.

As in our case $\Delta l=x$, then in magnitude $F=c|\Delta l|=c|x|$. The factor c is called the stiffness of the spring, or the spring constant. Let us find the work done by the elastic force in the displacement of the weight from position $M_{0}\left(x_{0}\right)$ to position $M_{l}\left(x_{l}\right)$. As in this case $F_{x}=-F=-c x, F_{y}=F_{z}=0$, then, substituting these expressions into Eq. (5.29), we obtain

$$
A_{\left(M_{0} M_{1}\right)}=\int_{\left(M_{0}\right)}^{\left(M_{1}\right)}(-c x) d x=-c \int_{x_{0}}^{x_{1}} x d x=\frac{c}{2}\left(x_{0}^{2}-x_{1}^{2}\right) .
$$

In the obtained formula x_{0} is the initial extension of the spring $\Delta l_{i n}$, and x_{1} is the final extension $\Delta l_{\text {fin }}$. Hence

$$
A_{\left(M_{0} M_{1}\right)}=\frac{c}{2}\left[\left(\Delta l_{\text {in }}\right)^{2}-\left(\Delta l_{f i n}\right)^{2}\right] .
$$

The work is positive if $\left|\Delta l_{i n}\right|>\left|\Delta l_{f i n}\right|$, i.e., when the end of the spring moves towards the position of equilibrium, and negative when $\left|\Delta l_{i n}\right|<\left|\Delta l_{\text {fin }}\right|$ i.e., when the end of the spring moves away from the position of equilibrium.

It follows, therefore, that the work done by the force \boldsymbol{F} depends only on the quantities $\Delta l_{i n}$ and $\Delta l_{f i n}$ and does not depend on the actual path traveled by M.

Consequently, an elastic force is also a conservative force.
Work Done by Friction. Consider a particle moving on a rough surface (Fig. 36) or a rough curve. The magnitude of the frictional force acting on the particle is $f \mathrm{~N}$,

Fig. 36 where f is the coefficient of friction and N is the normal reaction of the surface.

Frictional force is directed opposite to the displacement of the particle, whence $F_{f r \tau}=-f N$, and from Eq. (5.28),

$$
A_{\left(M_{0} M_{1}\right)}=-\int_{\left(M_{0}\right)}^{\left(M_{1}\right)} F_{f r} d s=-\int_{\left(M_{0}\right)}^{\left(M_{1}\right)} f N d s
$$

If the frictional force is constant, then $A_{\left(M_{0} M_{1}\right)}=$ $-F_{f r} s$ where s is the length of the arc $M_{0} M_{l}$ along which the particle moves. Thus, the work done by kinetic friction is always negative. It depends on the length of the arc $M_{0} M_{1}$ and consequently it is non-conservative.

Work Done by Gravitational Forces Acting on a System. The work done by a gravitational force acting on a particle of weight p_{k} will be $p_{k}\left(z_{k 0}-z_{k 1}\right)$, where $z_{k 0}$ and $z_{k 1}$ are the coordinates of the initial and final positions of the particle. Then the total work done by all the gravitational forces acting on a system will be

$$
A=\sum p_{k} z_{k 0}-\sum p_{k} z_{k 1}=P\left(z_{c 0}-z_{c 1}\right)= \pm P h_{c} .
$$

where P is the weight of the system, and h_{c} is the vertical displacement of the centre of gravity (or centre of mass) of the system.

Work Done by Forces Applied to a Rotating Body. The elemental work done by the force \boldsymbol{F} applied to the body in Fig. 37 will be

Fig. 37

$$
d A=F_{\tau} d s=F_{\tau} h d \varphi
$$

since $d s=h d \varphi$, where $d \varphi$ is the angle of rotation of the body.

But it is evident that $F_{\tau} h=m_{z}(\boldsymbol{F})$. We shall call the quantity $M_{z}=m_{z}(\boldsymbol{F})$ the turning moment, or torque. Thus we obtain

$$
\begin{equation*}
d A=M_{z} d \varphi . \tag{5.30}
\end{equation*}
$$

Eq. (5.30) is valid when several forces are acting, if it is assumed that $M_{z}=\sum m_{z}\left(\boldsymbol{F}_{k}\right)$. The work done in a turn through a finite angle φ_{1} will be

$$
\begin{equation*}
A=\int_{0}^{\varphi_{1}} M_{z} d \varphi . \tag{5.31}
\end{equation*}
$$

and, for a constant torque ($M_{z}=$ const.),

$$
\begin{equation*}
A=M_{z} \varphi_{1} . \tag{5.3}
\end{equation*}
$$

If acting on a body is a force couple laying in a plane normal to $O z$, then, evidently, M_{z} in Eqs. (5.30)-(5.32) will denote the moment of that couple.

Let us see how power is determined in this case. From Eq. (5.30) we find

$$
N=\frac{d A}{d t}=\frac{M_{z} d \varphi}{d t}=M_{z} \omega .
$$

Work Done by Frictional Forces Acting on a Rolling Body. A wheel of radius R rolling without slipping on a plane (surface) is subjected to the action of a frictional force $\boldsymbol{F}_{f r}$, which prevents the slipping of the point of contact B on the surface (Fig. 38).

Fig. 38

The elemental work done by this force is $d A=-F_{f r} d s_{B}$. But point B is the instantaneous centre of zero velocity, and $\boldsymbol{v}_{B}=0$. As $d s_{B}=v_{B} d t$, $d s_{B}=0$, and for every elemental displacement $d A=0$.

Thus, in rolling without slipping, the work done by the frictional force preventing slipping is zero in any displacement of the body. For the same reason, the work done by the normal reaction N is also zero. The resistance to rolling is created by the couple ($\boldsymbol{N}, \boldsymbol{P}$) of moment $M=k N$, where k is the coefficient of rolling friction. Then by Eq.(5.30), and taking into account that the angle of rotation of a rolling wheel is $d \varphi=\frac{d s_{C}}{R}$,

$$
\begin{equation*}
\hat{A A}_{\text {roll }}=-k N d \varphi=-\frac{k}{R} N d s_{C}, \tag{5.33}
\end{equation*}
$$

where $d s_{C}$, is the elemental displacement of the centre C of the wheel. If $N=$ const., then the total work done by the forces resisting rolling will be

$$
\begin{equation*}
A_{\text {roll }}=-k N \varphi_{1}=-\frac{k}{R} N s_{C} . \tag{5.34}
\end{equation*}
$$

5.15. Theorem of the Change in the Kinetic Energy of a Particle

Consider a particle of mass m displaced by acting forces from a position M_{0} where its velocity is v_{0}, to position M_{I} where its velocity is v_{1}.

To obtain the required relation, consider the equation $m \boldsymbol{a}=\sum \boldsymbol{F}_{k}$, which expresses the fundamental law of dynamics. Projecting both parts of this equation on the tangent $M \tau$ to the path of the particle in the direction of motion, we obtain

$$
m a_{\tau}=\sum F_{k \tau} .
$$

The tangential acceleration in the left side of the equation can be written in the form

$$
a_{\tau}=\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=\frac{d v}{d s} v,
$$

hence, we have $m v \frac{d v}{d s}=\sum F_{k \tau}$.
Multiplying both sides of the equation by $d s$, bring $m v$ under the differential sign. Then, noting that $F_{k \tau} d s=d A_{k}$, where $d A_{k}$ is the elementary work done by the force \boldsymbol{F}_{k}, we obtain an expression of the theorem of the change in kinetic energy in differential form:

$$
\begin{equation*}
d\left(\frac{m v^{2}}{2}\right)=\sum_{k} d A_{k} . \tag{5.35}
\end{equation*}
$$

Integrating both sides of Eq. (5.35) in the limits between the corresponding
values of the variables at points M_{0} and M_{1}, we finally obtain

$$
\begin{equation*}
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=\sum_{k} A_{k} . \tag{5.36}
\end{equation*}
$$

Eq. (5.36) states the theorem of the change in the kinetic energy of a particle in the final form: the change in the kinetic energy of a particle in any displacement is equal to the algebraic sum of the work done by all the forces acting on the particle in the same displacement.

The Case of Constrained Motion. If the motion of a particle is constrained, then the right side of Eq. (5.36) will include the work done by the given (active) forces \boldsymbol{F}_{k}^{a} and the work done by the reaction of the constraint. Let us limit ourselves to the case of a particle moving on a fixed smooth (frictionless) surface or curve. In this case the reaction N is normal to the path of the particle, and $N_{\tau}=0$. Then by Eq. (5.28), the work done by the reaction of a fixed smooth surface (or curve) in any displacement of a particle is zero, and from Eq. (5.36) we obtain

$$
\begin{equation*}
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=\sum A_{\left(M_{0} M_{1}\right)}^{a} . \tag{5.36'}
\end{equation*}
$$

Thus, in a displacement of a particle on a fixed smooth surface (or curve) the change in the kinetic energy of the particle is equal to the sum of the work done in this displacement by the active forces applied to that particle.

If the surface, (curve) is not smooth, the work done by frictional force will be added to the work done by the active forces.

5.16. Theorem of the Change in the Kinetic Energy of a System

The theorem proved in § 5.15 is valid for any point of a system. Therefore, if we take any particle of mass m_{k} and velocity \boldsymbol{v}_{k} belonging to a system, we have for this particle

$$
\frac{m_{k} v_{k 1}^{2}}{2}-\frac{m_{k} v_{k 0}^{2}}{2}=A_{k}^{e}+A_{k}^{i},
$$

where $v_{k 0}$ and $v_{k 1}$ denote the particle's velocity at the beginning and the end of the displacement, and A_{k}^{e} and A_{k}^{i} are the sums of the work done by all the external and internal forces acting on the particle through this displacement.

If we write similar equations for all the particles of a system and add them up, we obtain

$$
\begin{equation*}
\sum \frac{m_{k} v_{k 1}^{2}}{2}-\sum \frac{m_{k} v_{k 0}^{2}}{2}=\sum A_{k}^{e}+\sum A_{k}^{i} \text { or } T_{1}-T_{0}=\sum A_{k}^{e}+\sum A_{k}^{i}, \tag{5.37}
\end{equation*}
$$

where T_{1} and T_{0} denote the kinetic energy of the system at the beginning and the end of the displacement.

This equation states the following theorem of the change in kinetic energy: The change in the kinetic energy of a system during any displacement is equal to the sum of the work done by all the external and internal forces acting on the system in that displacement.

For an infinitesimal displacement of a the system theorem takes the form

$$
\begin{equation*}
d T=d A^{e}-d A^{i} \tag{5.38}
\end{equation*}
$$

where $d A^{e}$ and $d A^{i}$ denote the elemental work done by all the external and internal forces acting on the system. Unlike the previously proved theorems, in Eqs. (5.37) and (5.38) the internal forces are not ignored. For, if \boldsymbol{F}_{12}^{i} and \boldsymbol{F}_{21}^{i} are the forces of interaction between points B_{1} and B_{2} of a system (see Fig. 39), then $\boldsymbol{F}_{12}^{i}+\boldsymbol{F}_{21}^{i}=0$, but at the same time point B_{1} may be moving towards B_{2} and point B_{2} towards B_{1}. The work done by each force is positive, and the total work will not be zero.

The Case of Non-Deformable Systems. A non-deformable system is defined as one in which the distance between the points of application of the internal forces does not change during the motion of the system. Special cases of such systems are a rigid body and an inextensible string. Let two points B_{1} and B_{2} of a non-deformable system (Fig.39) be acting on each other with forces \boldsymbol{F}_{12}^{i} and \boldsymbol{F}_{21}^{i} $\left(\boldsymbol{F}_{12}^{i}=-\boldsymbol{F}_{21}^{i}\right)$ and let their velocities at some instant be \boldsymbol{v}_{1} and \boldsymbol{v}_{2} Their displacements in a

Fig. 39 time interval $d t$ will be $d s_{1}=v_{1} d t$ and $d s_{2}=v_{2} d t$ directed along vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. But as line $B_{1} B_{2}$ is non-deformable, it follows from the laws of kinematics that the projections of vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} and consequently of the displacements $d s_{1}$ and $d s_{2}$ on the direction of $B_{1} B_{2}$ will be equal, i.e., $B_{1} B_{I}^{\prime}=B_{2} B_{2}{ }^{\prime}$. Then the elemental work done by forces \boldsymbol{F}_{12}^{i} and \boldsymbol{F}_{21}^{i} will be equal in magnitude and opposite in sense, and their sum will be zero. This holds for all internal forces in any displacement of a system.

We conclude from this that the sum of the work done by all the internal forces of a non-deformable system is zero, and Eq. (5.37) takes the form

$$
\begin{equation*}
T_{1}-T_{0}=\sum A_{k}^{e} \tag{5.39}
\end{equation*}
$$

Both the external and internal forces in Eqs. (5.37)-(5.39) include the reactions of constraints. If the constraints on which the bodies of a system move are smooth, then the work done by the reactions of these constraints in any displacement of the system is zero and the reactions will not enter into Eqs (5.37)-(5.39).

Thus in applying the theorem of the change in kinetic energy to frictionless systems, all the immediately unknown reactions of the constraints will be excluded from the problem. This is where its practical value lies.

5.17. Solution of Problems

Problem 11. The centre of gravity of the shaft of the motor in Fig. 40 is located at a distance $A B=a$ from the axis of rotation. The shaft is of weight \boldsymbol{p}, and the weight of all other parts of the motor is \boldsymbol{P}. Deduce the law of motion of the motor on a smooth horizontal surface if the shaft rotates with a uniform angular velocity ω. Also determine the maximum stress that will be developed in a bolt D fastening the motor to the surface.

Solution. In order to eliminate the forces rotating the shaft by making them

Fig. 40 internal, consider the motor with the shaft as a single system.

1) For the motor standing freely on the plane, all the forces acting on it are vertical and the law of conservation of the motion of the centre of mass parallel to axis $O x$ will apply. Show the motor in an arbitrary position, assuming as initial the position in which points B and A are on the same vertical (on the y axis). Then in the arbitrary position $\xi_{A}=x, \xi_{B}=x+$ $a \sin \varphi$. Here ξ_{A} and ξ_{B} perform projections of absolute displacements on x axis. Hence, taking into account the law of conservation of motion of the center of mass of a system ($x_{c}=$ const. $)$ and that $\varphi=\omega$, we find

$$
P \xi_{A}+p \xi_{B}=0 \text { or } P x+p(x+a \sin \omega t)=0
$$

whence

$$
x=-\frac{p a}{P+p} \sin \omega t
$$

Thus, the motor will perform simple harmonic motion with an angular frequency ω.
2) When the motor is fastened, the horizontal reaction R_{x} of the bolt, by the first of Eqs. (5.6), will be

$$
R_{x}=M \frac{d^{2} x_{c}}{d t^{2}}, \text { where } x_{\mathrm{C}}=\frac{P x_{A}+p x_{B}}{M g} .
$$

In this case point A is fixed, and $x_{A}=h\left(h=\right.$ const.) and $x_{B}=h+a \sin \omega t$. Differentiating the expression of x_{C} and multiplying it by M, where M is the mass of the whole system, we obtain

$$
R_{x}=M \frac{d^{2} x_{C}}{d t^{2}}=\frac{p}{g} \frac{d^{2} x_{B}}{d t^{2}}=-\frac{p a \omega^{2}}{g} \sin \omega t
$$

The pressure on the bolt is equal to $\left|R_{x}\right|$ in magnitude and opposite in direction. Its maximum value will be

$$
\frac{p a \omega^{2}}{g}
$$

Problem 12. Crank $A B$ of length r and weight p of the mechanism in Fig. 41 rotates with a constant angular velocity ω and actuates the slotted bar and the piston D connected to it. The total weight of the bar and piston is P. Acting on the piston during the motion is a constant force Q. Neglecting friction, determine the maximum horizontal pressure of the crank on its axle A.

Solution. In order to eliminate the forces rotating the crank and the pressure exerted on it by the slotted bar, consider the motion of the system as a whole.

Denoting the horizontal reaction of the axle A by \boldsymbol{R}_{x} we have from the first of Eqs. (5.6)

$$
M \frac{d^{2} x_{C}}{d t^{2}}=R_{x}-Q
$$

where, by Eqs. (4.4), $M x_{C}=m_{1} x_{1}+m_{2} x_{2}$.
In our case

Fig. 41

$$
\begin{aligned}
& \quad m_{1}=\frac{p}{g}, \quad x_{1}=\frac{r}{2} \cos \omega t ; \\
& m_{2}=\frac{P}{g}, \quad x_{2}=a+r \cos \omega t, \\
& \text { as } \varphi=\omega t . \text { We finally obtain }
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=Q+M \frac{d^{2} x_{C}}{d t^{2}}=Q- \\
& \frac{r \omega^{2}}{g}\left(\frac{p}{2}+P\right) \cos \omega t .
\end{aligned}
$$

The pressure on the shaft is equal in magnitude to $\left|R_{x}\right|$ and oppositely directed. The maximum pressure will
be at $\varphi=180^{\circ}$ and will be equal to

$$
Q+\frac{r \omega^{2}}{g}\left(\frac{p}{2}+P\right)
$$

Problem 13. A load of weight $p=1 N$ moves in a circle with a constant velocity $2 \mathrm{~m} / \mathrm{sec}$. Determine the impulse and the work done by the force acting on the load during the time the load takes to travel one quarter of the circle.

Solution. From the theorem of the change in momentum,

$$
\boldsymbol{S}=m \boldsymbol{v}_{\mathbf{1}}-m \boldsymbol{v}_{\mathbf{0}} .
$$

Constructing geometrically the difference between these momenta (Fig. 42), we find from the right-angled triangle:

$$
S=m \sqrt{v_{1}^{2}+v_{0}^{2}} .
$$

But from the conditions of the problem $v_{1}=v_{0}=v$, consequently

$$
S=\frac{p}{g} v \sqrt{2}=0.29 \mathrm{~N} \cdot \mathrm{sec} .
$$

Fig. 42

Problem 14. A load of mass m lying on a horizontal plane is pushed and imparted an initial velocity \boldsymbol{v}_{0}. The motion of the load is then retarded by a constant force \boldsymbol{F}. Determine the time it takes the load to stop and how far it will have travelled.

Solution. Draw the load in an arbitrary position (Fig. 43), M_{0} and M_{1} being its initial and final positions. Acting on the load are its weight \boldsymbol{P}, the reaction of the plane N, and the opposing force \boldsymbol{F}. Pointing axis $O x$ in the direction of the motion, we have from Eq. (5.8'):

Fig. 43

$$
m v_{1 x}-m v_{0 x}=\sum S_{x}
$$

In this case $v_{1 x}=0\left(v_{1}\right.$ is the velocity at the instant when the load stops) and $v_{0 x}=$ v_{0}. Force \boldsymbol{F} is the only one projected on the x axis. As it is constant, $S_{x}=F_{x} t_{1}=-F t_{1}$, where t_{1} is the deceleration time. Substituting these expressions into our equation, we obtain $-m v_{0}=-F t_{1}$, whence the required time is

$$
t_{1}=\frac{m v_{0}}{F}
$$

To determine the braking distance we use the theorem of the change in kinetic energy:

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=\sum A_{k} .
$$

Here again $v_{1}=0$ and only force \boldsymbol{F} does the work: $A(\boldsymbol{F})=-F s$, where s is the braking distance. The work done by forces \boldsymbol{P} and \boldsymbol{N} is zero as they are perpendicular to the displacement. Hence we obtain $-\frac{m v_{0}^{2}}{2}=-F s_{1}$, and the braking distance is

$$
S_{1}=\frac{m v_{0}^{2}}{2 F}
$$

Problem 15. The resultant \boldsymbol{R} of all the forces acting on the piston in Fig. 44 changes during a certain time-interval according to the equation $R=0.4 P(1-k t)$, where P is the weight of the piston, t is the time in seconds, and k a factor equal to $1.6 \mathrm{sec}^{-1}$. Determine the velocity of the piston at time $t_{1}=0.5 \mathrm{sec}$, if at time $t_{0}=0$ it was $v_{0}=0.2 \mathrm{~m} / \mathrm{sec}$.

Solution. As the acting force depends on the time and the given and required quantities include t_{1}, v_{0}, and v_{1}, we make use of Eq. (5.8'):

$$
m v_{1 x}-m v_{0 x}=S_{x} .
$$

In this case

Fig. 44

$$
S_{x}=\int_{0}^{t_{1}} R_{x} d t=0.4 P \int_{0}^{t_{1}}(1-k t) d t=0.4 P t_{1}\left(1-\frac{k}{2} t_{1}\right) .
$$

Furthermore, $v_{0 x}=0, v_{1 x}=v_{1}$ and $m=\frac{P}{g}$. Substituting these expressions, we obtain

$$
v_{1}=v_{0}+0.4 g t_{1}\left(1-\frac{k}{2} t_{1}\right) \approx 1.4 \mathrm{~m} / \mathrm{sec} .
$$

Problem 16. A bullet of weight p fired horizontally with a velocity u hits a box of sand standing on a truck (Fig. 45). What velocity will the truck receive as a result of the impact if its weight together with the box of sand is P ?

Solution. Consider the bullet and the truck as one system. This enables us to

Fig. 45 exclude the forces generated when the bullet hits the sand. The sum of the projections of the external forces on the horizontal axis x is zero. Consequently, $Q_{x}=$ const., or $Q_{0 x}=Q_{1 x}$, where Q_{0} is the momentum of the system before the impact, and Q_{1}, after the impact. As the truck was motionless before the impact,

$$
Q_{0 x}=\frac{p}{g} u
$$

After the impact the truck and bullet are moving with the same velocity v. Then

$$
Q_{1 x}=\frac{p+P}{g} v
$$

and equating the right sides of the expressions for $Q_{0 x}$ and $Q_{1 x}$, we obtain

$$
v=\frac{p}{p+P} u
$$

Problem 17. Determine the recoil of a gun if its barrel is horizontal, the weight of the recoiling parts is P, the weight of the shell is p, and the muzzle velocity of the shell is u.

Solution. To exclude the unknown forces developed by the pressure of the gases, consider the shell and the gun as one system.

Neglecting the resistance to the recoil during the motion of the shell in the bore,

Fig. 46 we find that the sum of the projection of the applied external forces on the axis x is zero (Fig. 46). Hence, $Q_{x}=$ const. and, since before the shot the system was motionless $\left(Q_{0}=0\right)$, for any moment of time $Q_{x}=0$.

If the velocity of the recoiling parts at the final instant is \boldsymbol{v}, then the absolute velocity of the shell at that moment is $\boldsymbol{u}+\boldsymbol{v}$. Consequently,

$$
Q_{x}=\frac{P}{g} v_{x}+\frac{p}{g}\left(u_{x}+v_{x}\right)=0
$$

whence we find

$$
v_{x}=-\frac{p}{p+P} u_{x}
$$

If we knew the absolute muzzle velocity $\boldsymbol{u}_{\boldsymbol{a}}$ of the shell, we could have substituted $u_{a x}$ for $u_{x}+v_{x}$, whence

$$
v_{x}=-\frac{p}{P} u_{a x}
$$

The minus sign in both cases means that \boldsymbol{v} is in the opposite direction of \boldsymbol{u}.
Note that in calculating the total momentum of a system the absolute velocity of its parts should be considered.

Problem 18. A jet of water of diameter $d=4 \mathrm{~cm}$ is discharger from a nozzle with a velocity $u=10 \mathrm{~m} / \mathrm{sec}$ and impinges normally against a fixed vertical wall (Fig. 47). Neglecting the compression in the jet, determine the force of water on the wall.

Solution. To exclude the internal forces of interaction of the water particles between each other at the time of impact, apply the first of Eqs. (5.11')

$$
Q_{1 x}-Q_{0 x}=\sum S_{k x}^{e}
$$

to the part of the jet filling the volume $a b c$ at the given instant. Let us calculate for this volume the difference $Q_{1 x}-Q_{0 x}$ for a certain time interval t_{1}. During this interval, the volume of water will occupy configuration $a_{1} b_{1} c_{1}$, and the value of Q_{x} will decrease by $m u$, where m is the mass of volume $a a_{1}$. The liquid filling volumes $b b_{1}$ and $c c_{1}$ moves normally to axis $O x$ and therefore does not increase the value of Q_{x}. As we have only Q_{x} decreasing, $Q_{1 x}-Q_{0 x}=$ $-m u$. Reaction \boldsymbol{R} of the wall will be the only external force acting on the given volume and giving a projection on axis $O x$. Assuming

Fig. 47 $R=$ const., we obtain
$\sum S_{k x}^{e}=R_{x} t_{1}=-R t_{1}$, and $m u=R t_{1}$. Now compute m. As the displacement $a a_{1}=u t_{1}$,

$$
m=\frac{\gamma}{g} \frac{\pi d^{2}}{4} u t_{1}
$$

where γ is the weight of a unit volume, and consequently, $\frac{\gamma}{g}$ is the mass of a unit volume of the liquid. Substituting this value and taking into account that for water $\gamma=10000 \mathrm{~N} / \mathrm{m}^{3}$, we finally obtain

$$
R=\frac{\gamma}{g} \frac{\pi d^{2}}{4} u^{2}=128 N
$$

Problem 19. Two discs having moments of inertia J_{1} and J_{2} are mounted on a shaft as shown in Fig. 48. If the shaft is twisted and then released, find the dependence between the angular velocities and the angle of turn of the discs in the ensuing torsional vibrations. Neglect the mass of the shaft.

Solution. To exclude the unknown elastic forces which cause the discs to vibrate, consider both discs and the shaft as a single system. The external forces (the reactions of the bearings and the force of gravity) intersect with axis x, whence $\sum m_{x}\left(F_{k}^{e}\right)=0$, and $K_{x}=$ const. But since at the

Fig. 48 initial moment $K_{x}=0$, during the whole of the vibration we must have $K_{x}=J_{1} \omega_{1}+J_{2} \omega_{2}=0$ (the angular momentum of the system
with respect to the x axis equals the sum of the angular momenta of each disc with respect to the same axis). We find from this that

$$
\omega_{1}=\frac{J_{2}}{J_{1}} \omega_{2} \quad \text { and } \quad \varphi_{1}=\frac{J_{2}}{J_{1}} \varphi_{2}
$$

where φ_{1}, and φ_{2} are the angles through which the discs were twisted, measured from the initial position (the latter result is obtained by integrating the first equation).

Thus, the vibrations will be in opposite directions, and the angular amplitudes will be inversely proportional to the moments of inertia of the discs.

Problem 20. A governor $A B$ with a moment of inertia J_{Z} consists of two symmetrically placed weights of mass m, each attached to two springs as shown in Fig. 49, and it rotates about a vertical axis $O z$. At time $t_{0}=0$, the governor receives an angular velocity ω_{0}, and each weight starts to oscillate in damped vibration about its respective centre C at a distance l from axis $O z$. Neglecting friction and considering the weights as particles, determine the dependence of the angular velocity ω of the governor on the position of the weights.

Solution. To exclude the unknown elastic forces of the springs, consider the governor and the weights as one system. Then $\sum m_{z}\left(\boldsymbol{F}_{k}^{e}\right)=0$, and $K_{z}=$ const.

Fig. 49 At time $t_{0}=0$, the displacement $x=0$ and $K_{z 0}=\left(J_{z}+2 m l^{2}\right) \omega_{0}$. At any arbitrary instant $t, K_{z}=\left[J_{z}+2 m(l+x)^{2}\right] \omega$. As $K_{z}=K_{z o}$,

$$
\omega=\frac{J_{z}+2 m l^{2}}{J_{z}+2 m l(l+x)^{2}} \omega_{0}
$$

Consequently, when $x>0, \omega<\omega_{0}$, and when $x<0, \omega>\omega_{0}$, i.e., the angular velocity changes about a mean value ω_{0}. When the vibrations of the weights dampen with time, x tends to zero, and ω to ω_{0}.

Problem 21. A track is laid along the circumference of a disc of radius R and weight P. Standing on the track is a toy springwound car of weight p. The disc rotates together with the car about a vertical axis z with an angular velocity ω_{0} (Fig. 50). Determine how the angular velocity of the disc will change if at some instant the car will start moving in the direction of the rotation with a velocity u relative to the disc.

Solution. To exclude the unknown frictional forces between the wheels of the car and the disc, consider both as one system. The moments of the

Fig. 50 external forces acting on the system with respect
to the z axis are zero. Consequently, $K_{z}=$ const. Considering the disc to be homogeneous ($J_{z}=0.5 M R^{2}$) and the car as a particle, we have

$$
K_{z 0}=\left(0.5 \frac{P}{g} R^{2}+\frac{p}{g} R^{2}\right) \omega_{0} .
$$

When the car starts moving its absolute velocity will be $v_{a}=u+\omega R$, where ω is the new angular velocity of the disc. The angular momentum of the car about the z axis will be $m v_{a} R=m\left(u R+\omega R^{2}\right)$, and for the whole system we have

$$
K_{z 1}=0.5 \frac{P}{g} R^{2} \omega+\frac{p}{g}\left(u R+R^{2} \omega\right) .
$$

As $K_{z}=$ const., $K_{z 1}=K_{z 0}$, whence

$$
\omega=\omega_{0}-\frac{P}{0.5 P+p} \frac{u}{R} .
$$

The angular velocity of the disc, we see, decreases. If the car travels in the opposite direction, ω will increase.

Note that in calculating K_{z} the absolute velocities of all moving points of the system were taken.

Problem 22. Wound on a drum of weight P and radius r (Fig. 51) is a string carrying a load A of weight Q. Neglecting the mass of the string and friction,

Fig. 51 determine the angular acceleration of the drum when the load falls, if the radius of gyration of the drum with respect to its axis is ϱ.

Solution. Applying the theorem of moments with respect to axis O, we have

$$
\frac{d K_{0}}{d t}=\sum m_{0}\left(\boldsymbol{F}_{k}^{e}\right) .
$$

The moving system consists of two bodies, consequently

$$
K_{0}=K_{\text {drum }}+K_{\text {load }} .
$$

The load is in translational motion, and we consider it as a particle. Its velocity is $v=\omega r$. The drum rotates about a fixed axis, consequently,

$$
K_{\text {load }}=\frac{Q}{g} v r=\frac{Q}{g} r^{2} \omega ; K_{\text {drum }}=J_{0} \omega=\frac{P}{g} \varrho^{2} \omega,
$$

and

$$
K_{0}=\left(Q r^{2}+P \varrho^{2}\right) \frac{\omega}{g} .
$$

Substituting this expression for K_{0}, we obtain

$$
\frac{Q r^{2}+P \varrho^{2}}{g} \frac{d \omega}{d t}=Q r
$$

whence

$$
\varepsilon=\frac{Q r g}{Q r^{2}+P \varrho^{2}} .
$$

Problem 23. A weight attached to a string of length l (Fig. 52b) is displaced from the vertical at an angle φ_{0} and released from rest. Determine the velocity of the weight at the instant when the thread makes an angle φ with the vertical.

Fig. 52

Solution. As the conditions of the problem include the displacement of the weight, defined by the angle through which the thread passes, and the velocities v_{0} and v_{1}, we make use of the theorem of the change in kinetic energy:

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=\sum A_{k} .
$$

Acting on the weight is the force of gravity \boldsymbol{P} and the reaction of, the thread N. The work done by force N is zero, as $N_{\tau}=$ 0 . For force \boldsymbol{P} we have $A(\boldsymbol{P})=P h=m g h$. As $v_{0}=0$, we obtain $\frac{m v_{1}^{2}}{2}=m g h$, whence

$$
v_{1}=\sqrt{2 g h} .
$$

Evidently, the result is the same for the velocity v of a freely falling weight (Fig.52a).

In our problem $h=l \cos \varphi-l \cos \varphi_{0}$, and finally

$$
v=\sqrt{2 g l\left(\cos \varphi-\cos \varphi_{0}\right)} .
$$

Problem 24. The length l_{0} of an uncompressed valve spring is 6 cm . When the valve is completely open it is lifted to a height $s=0.6 \mathrm{~cm}$ and the length of the compressed spring is $l=4 \mathrm{~cm}$ (Fig. 53).The stiffness of the spring is $c=1 \mathrm{~N} / \mathrm{cm}$ and the weight of the valve is $p=4 \mathrm{~N}$. Neglecting the

Fig. 53 gravitational and resisting forces, determine the velocity of the valve at the moment of its closure.

Solution. The elastic force \boldsymbol{F} acting on the valve depends on the displacement s of the valve, which is given. Therefore we use Eq. (5.36):

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=A_{k} .
$$

According to the conditions of the problem, the only force doing work is the elastic force of the spring. Hence, we have

$$
A_{k}=\frac{c}{2}\left[\left(\Delta l_{i n}\right)^{2}-\left(\Delta l_{f i n}\right)^{2}\right] .
$$

In our case $\Delta l_{\text {in }}=l_{0}-l=2 \mathrm{~cm}, \Delta l_{\text {fin }}=l_{0}-l-$ $s=1.4 \mathrm{~cm}$.

Furthermore, $v_{0}=0$ and $m=\frac{P}{g}$. Substituting these expression, we obtain

$$
v_{1}=\sqrt{\frac{c g}{p}\left(\Delta l_{i n}\right)^{2}-\left(\Delta l_{\text {fin }}\right)^{2}} \approx 0.22 \mathrm{~m} / \mathrm{sec}
$$

Problem 25. An elastic beam supporting a weight at the centre of its span (Fig. 54) deflects by an amount $\delta_{s t}$ (the static deflection of the beam). Neglecting the weight of the beam, determine

Fig. 54 its maximum deflection $\delta_{\max }$ if the weight is dropped on it from a height H.

Solution. As in the previous problem, we apply Eq. (5.36). The initial velocity v_{0} and the final velocity v_{1} (at the instant of the maximum deflection of the beam) of the weight are each zero, and Eq. (5.36) takes the from

$$
\sum A_{k}=0
$$

The forces doing work are the gravitational force \boldsymbol{P} in the displacement $M_{0} M_{1}$ and the elastic force F of the beam in the deflection of the beam.

Also, $\quad A(\boldsymbol{P})=P\left(H+\delta_{\max }\right), \quad A(\boldsymbol{F})=\frac{c}{2} \delta_{\max }^{2}$, as for the beam $\Delta l_{\text {in }}=$ $0, \Delta l_{f i n}=\delta_{\text {max }}$. Substituting these expressions, we obtain

$$
P\left(H+\delta_{\max }\right)-\frac{c}{2} \delta_{\max }^{2}=0
$$

When the weight on the beam is in equilibrium it is balanced by elastic force. Consequently, $P=c \delta_{s t}$, and the last equation can be written in the form

$$
\delta_{\max }^{2}-2 \delta_{\max } \delta_{s t}-2 \delta_{s t} H=0
$$

Solving this quadratic equation, and taking into account that according to the conditions of the problem $\delta_{\max }>0$, we find

$$
\delta_{\max }=\delta_{s t}+\sqrt{\delta_{s t}^{2}+2 H \delta_{s t}} .
$$

Problem 26. A load of weight P attached to a string of length l is displaced through an angle α from the vertical to a position M_{0} and released from rest (Fig. 55). Determine the tension in the thread when the load is in its lowest position M_{1}.

Solution. Draw the load in the position for which the tension in the string has to be found, i.e., in position M_{1}. Acting on the load is its weight \boldsymbol{P} and the reaction of the thread \boldsymbol{T}. Draw the inward normal $M_{1} n$ and write Eq. (1.2), taking into account that $a=a_{n}=\frac{v^{2}}{\rho}$ and in the present case $\rho=l$. We have:

$$
\frac{m v_{1}^{2}}{l}=T-P \text { or } T=P+\frac{m v_{1}^{2}}{l},
$$

where v_{1} is the velocity of the load at position M_{1}. To determine v_{1}, we make use of Eq. (5.36'):

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=A_{\left(M_{0} M_{1}\right)}^{a}
$$

On the section $M_{0} M_{1}$ only force \boldsymbol{P} does any work. Therefore, $A^{a}=P h=P l(1-\cos \alpha)$.

As $v_{0}=0$, substituting the expression developed for the work, we obtain $m v_{1}^{2}=2 P l(1-\cos \alpha)$, and finally

$$
T=P(3-2 \cos \alpha) .
$$

Fig. 55

In the special case, when the initial angle of deflection is 90°, the tension in the string when it is in vertical position will be $3 P$, i.e., treble the weight of the load. The result shows that dynamic reactions can differ considerably from static reactions.

Problem 27. A grooved track makes two circular arcs $A B$ and $B D$ of radius R in a vertical plane; the tangent $B E$ through their

Fig. 56 point of conjugation is horizontal (Fig. 56).

Neglecting friction, determine the height h from $B E$ at which a heavy ball should be placed on the track so that it would shoot out of the track at point M_{1} lying at the same distance h below $B E$.

Solution. The ball will leave the track at a point M_{1} such that its pressure on the track (or the reaction N of the track) is zero. Consequently, our problem is reduced to the determination of N. Draw the ball at M_{1}. Acting on it are the force of gravity \boldsymbol{P} and the reaction of the track N. Writing Eq. (5.36') for the projections on the inward normal $M_{1} n$, we have

$$
\frac{m v_{1}^{2}}{R}=P \cos \varphi-N \text {. }
$$

Since at the point of departure $N=0$, and taking into account that $R \cos \varphi=$ $K C=R-h$, for determining h we obtain equation

$$
m v_{1}^{2}=P(R-h) .
$$

The value of $m v_{1}^{2}$ can be found from the theorem of the change in kinetic energy. As $v_{0}=0$, Eq. (5.36') gives

$$
\frac{m v_{1}^{2}}{2}=A_{\left(M_{0} M_{1}\right)}^{a} .
$$

The only force that does work is \boldsymbol{P}, and $A(\boldsymbol{P})=P 2 h$. Consequently, $m v_{1}^{2}=$ $4 P h$. Substituting this expression of $m v_{1}^{2}$, we obtain $4 h=R-h$, whence $h=0.2 R$.

Problem 28. A load M is attached to a string of length l (Fig. 57). What is the least initial velocity v_{0} perpendicular to the string that should be imparted to the load for it to describe a complete circle?

Solution. The load will describe a complete circle if nowhere along its path (except, possibly, point M^{\prime}) will the tension in the string become zero, i.e., if the string remains taut. If on the other hand, at any point M_{1} where $v_{1} \neq 0$ the tension becomes zero, the string will no longer constrain the load, which will continue to move as a free body.

To solve the problem we must determine the tension T in the string at any point M defined by angle φ and then require that $T>0$ for any angle $\varphi \neq 180^{\circ}$.

Acting on the load at point M are its weight \boldsymbol{P} and the tension of the thread \boldsymbol{T}. Writing Eq. (1.2) for the projections on the inward normal $M n$, we obtain

$$
\frac{m v^{2}}{l}=T-P \cos \varphi,
$$

where v is the velocity of the load at point M. To determine v we apply the theorem of the change in kinetic energy:

$$
\frac{m v^{2}}{2}-\frac{m v_{0}^{2}}{2}=A_{\left(M_{0} M_{1}\right)}^{a} .
$$

In our case $A_{\left(M_{0} M_{1}\right)}^{a}=-P h=-P l(1-\cos \varphi)$, and consequently $m v^{2}=m v_{0}^{2}-2 P l(1-\cos \varphi)$.

Fig. 57

Substituting this expression of $m v^{2}$ and solving for T, we obtain

$$
T=P\left(\frac{v_{0}^{2}}{g l}-2+3 \cos \varphi\right) .
$$

The least value of T is at $\varphi=180^{\circ}$:

$$
T_{\min }=P\left(\frac{v_{0}^{2}}{g l}-5\right) .
$$

The condition for T never to become zero (except, possibly, at point M^{\prime}) is that $T_{\min } \geq 0$. Hence,

$$
\frac{v_{0}^{2}}{g l} \geq 5 \quad \text { or } \quad v_{0} \geq \sqrt{5 g l} .
$$

Thus, the least initial velocity at which the load will describe a complete circle is given by the equation

$$
v_{0 \text { min }}=\sqrt{5 g l} .
$$

Let us assume that the load is attached not to a thread but to a rigid light (weightless) rod of length l. In this case (since, unlike a thread, a rod can work both in tension and in compression) the load will describe a complete circle if the velocity does not become zero anywhere (except, possibly, at point M^{\prime}). Applying Eq. (5.36') for the displacement $M_{0} M^{\prime}$ and assuming $v=0$ at point M^{\prime}, we obtain

$$
\frac{-m v_{0}^{2}}{2}=-m g 2 l
$$

Hence $v_{0 \text { min }}=\sqrt{4 g l}$.
Problem 29. Find the kinetic energy of a uniform cylindrical wheel of mass M rolling without slipping, if the velocity of its centre is

Fig. 58 v_{C}.

Solution. The wheel is in plane motion. By Eq. (5.24),

$$
T=\frac{1}{2} M v_{C}^{2}+\frac{1}{2} J_{C} \omega^{2}
$$

As the body is an uniform cylinder, we have $J_{c}=0.5 M R^{2}$, where R is the radius of the wheel. On the other hand, since point B is the instantaneous centre of zero velocity of the wheel (Fig. 58), $v_{C}=\omega B C=$ ωR, whence $\omega=v_{C} / R$.
Substituting these expressions, we find

$$
T=\frac{1}{2} M v_{C}^{2}+\frac{1}{4} M R^{2} \frac{v_{C}^{2}}{R^{2}}=\frac{3}{4} M v_{C}^{2}
$$

Problem 30. When body A in Fig. 59 translates with a velocity \boldsymbol{u}, body B moves in the slots of body A with a velocity \boldsymbol{v}. If angle φ is known, determine the kinetic energy of body B.

Solution. The absolute motion of body B is a translation with a velocity $\boldsymbol{v}_{\boldsymbol{a}}=$ $\boldsymbol{u}+\boldsymbol{v}$. Then

$$
T=\frac{1}{2} M v_{a}^{2}=\frac{1}{2} M\left(u^{2}+v^{2}+2 u v \cos \alpha\right)
$$

Fig. 59

A characteristic mistake in problems of this type is to regard the kinetic energy of the body as the sum of the energies of the relative and transport motions:

$$
T=T_{r e l}+T_{t r}=\frac{1}{2} M v^{2}+\frac{1}{2} M u^{2}
$$

and thus, it will be noticed, the component $M u v \cos \alpha$ drops out of the solution.
Thus, in the most general case of relative motion, the total kinetic energy of a body does not equal the sum of the kinetic energies of its relative and transport motions.

Problem 31. A mechanism consists of a part which is translated with a velocity \boldsymbol{u}, and a $\operatorname{rod} A B$ of length l and mass M hinged at A (Fig. 60). The rod rotates about axis A with an angular velocity ω. Determine the kinetic energy of the rod if angle φ is given.

Solution. The rod performs plane motion, and by Eq. (5.24)

$$
T=\frac{1}{2} M v_{C}^{2}+\frac{1}{2} J_{C} \omega^{2}
$$

Fig. 60

The velocity of point C is compounded of the velocities \boldsymbol{u} and \boldsymbol{v}_{r}, where in magnitude $v_{r}=\omega \frac{l}{2}$. Consequently, $v_{C}^{2}=u^{2}+v_{r}^{2}+2 u v_{r} \cos \varphi$.

The angular velocity of the rod about C is the same as about A, as ω does not depend on the location of the pole. Taking into account that $J_{C}=\frac{M l^{2}}{12}$ and substituting all these expressions, we obtain

$$
\begin{gathered}
T=\frac{1}{2} M\left(u^{2}+\omega^{2} \frac{l^{2}}{4}+u \omega l \cos \varphi\right)+\frac{1}{24} M l^{2} \omega^{2}= \\
=\frac{1}{2} M u^{2}+\frac{1}{6} M l^{2} \omega^{2}+\frac{1}{2} M l \omega u \cos \varphi
\end{gathered}
$$

Problem 32. A rod $A B$ of length l is hinged as shown at point A (Fig. 61). Neglecting friction, determine the minimum velocity ω_{0} that must be imparted to the rod so that it would swing into a horizontal configuration.

Solution. The given and required quantities include $\omega_{0}, \omega_{1}=0$, and the displacement of the system as defined by angle $B_{0} A B_{1}$. Therefore, the problem is best solved by applying Eq. (5.39):

$$
T_{1}-T_{0}=\sum A_{k}^{e} .
$$

Denoting the weight of the rod by \boldsymbol{P}, compute all the quantities in equation. From Eqs. (5.23) and taking into account that $J_{A}=\frac{M l^{2}}{3}$, we find

$$
T_{0}=\frac{1}{2} J_{A} \omega_{0}^{2}=\frac{1}{6} \frac{P}{g} l^{2} \omega_{0}^{2} .
$$

Fig. 61

Since in the final configuration the velocity of the rod is zero, $T_{1}=0$. The work is done only by force \boldsymbol{P}, and $A^{e}=-P h_{C}=-P \frac{l}{2}$. Substituting these values, we obtain

$$
-\frac{1}{6} \frac{P}{g} l^{2} \omega_{0}^{2}=-P \frac{l}{2},
$$

whence $\omega_{0}=\sqrt{\frac{3 g}{l}}$.
Problem 33. Two pulleys A and B are connected by a belt (Fig. 62). When the motor is switched off, pulley A of radius R, has an angular velocity ω_{0}. The total weight of the pulleys is P, and of the belt p. A brake shoe is applied to pulley A with a force Q to stop the rotation; the coefficient of friction of the shoe on the pulley is f.

Neglecting friction in the axles and considering the pulleys to be homogeneous discs, determine how many revolutions pulley A will make before stopping.

Solution. We shall use Eq. (5.39) to determine the required number of

Fig. 62 revolutions N :

$$
T_{1}-T_{0}=\sum A_{k}^{e} .
$$

From the conditions of the problem $T_{1}=0$, and $T_{0}=T_{A}+$ $T_{B}+T_{b}$. Taking into account that the initial velocities of all the points of the belt $v_{b 0}=\omega_{0} R=$ $\omega_{0}^{\prime} r$, where ω_{0}^{\prime} and r are the initial angular velocity and the radius of pulley B, we find:

$$
\begin{gathered}
T_{A}=\frac{1}{2}\left(\frac{P_{A}}{2 g} R^{2}\right) \omega_{0}^{2}, \quad T_{B}=\frac{1}{2}\left(\frac{P_{B}}{2 g} r^{2}\right) \omega_{0}^{\prime 2}=\frac{1}{4} \frac{P_{B}}{g} R^{2} \omega_{0}^{2}, \\
T_{b}=\frac{1}{2} \frac{p}{g} v_{b 0}^{2}=\frac{1}{2} \frac{p}{g} R^{2} \omega_{0}^{2} .
\end{gathered}
$$

The last equation follows from the fact that all the points of the belt move with the same speed. Finally, as $P_{A}+P_{B}=P$, we obtain

$$
T_{0}=\frac{P+2 p}{4 g} R^{2} \omega_{0}^{2} .
$$

Now compute the work done by the forces. In this case, the work done by gravity is zero, as the centers of gravity of the pulleys and the belt do not change their position during the motion. The force of friction $F_{f r}=f Q$, and the work done by it is found from Eq. (5.32):

$$
A_{f r}=-(f Q R) \varphi_{1}=-f Q R \cdot 2 \pi N .
$$

Substituting all the found values, we obtain finally

$$
N=\frac{(P+2 p) R \omega_{0}^{2}}{8 \pi g f Q} .
$$

Problem 34. A cart is drawn with a constant force $Q=160 N$ up an inclined plane making an angle $\alpha=30^{\circ}$ with the horizontal (Fig. 63). The platform of the cart weighs $P=180 \mathrm{~N}$, and each of its uniform wheels weighs $p=20 \mathrm{~N}$. Determine: 1) the linear velocity v_{1} of the cart, when it has travelled a distance $l=4 m$, if $\left.v_{0}=0 ; 2\right)$ the acceleration of the cart. The wheels roll without slipping. Neglect the rolling friction.

Solution. 1) Let us use Eq. (5.39) to determine v_{1} :

$$
T_{1}-T_{0}=\sum A_{k}^{e} .
$$

Fig. 63

In our case $T_{0}=0$ and $T_{0}=$ $T_{\text {platform }}+4 T_{\text {wheel }}$. The cart is in translatory motion, and the kinetic energy of a uniform rolling wheel was calculated in Problem 29. Thus,

$$
T_{1}=\frac{1}{2} \frac{P}{g} v_{1}^{2}+4\left(\frac{3}{4} \frac{p}{g} v_{1}^{2}\right)=\frac{1}{2 g}(P+6 p) v_{1}^{2}
$$

Work is done by force Q and the force of gravity $P_{1}=P+4 p$. The work done by the frictional forces preventing slippage and by the normal reactions is zero. Making the necessary computations, we find

$$
A(\boldsymbol{Q})=Q l ; \quad A\left(\boldsymbol{P}_{1}\right)=-(P+4 p) h_{C}=-(P+4 p) l \sin \alpha
$$

Substituting these expressions, we obtain

$$
\frac{1}{2 g}(P+6 p) v_{1}^{2}=[Q-(P+4 p) \sin \alpha] l
$$

whence

$$
v_{1}=\sqrt{\frac{2 g l[Q-(P+4 p) \sin \alpha]}{P+6 p}}=2.8 \mathrm{~m} / \mathrm{sec}
$$

2) To determine the acceleration a, let us consider the quantities v_{1} and l as variables. Then, differentiating through with respect to time, we have

$$
\frac{1}{g}(P+6 p) v \frac{d v}{d t}=[Q-(P+4 p) \sin \alpha] \frac{d l}{d t}
$$

But $\frac{d l}{d t}=v$, and $\frac{d v}{d t}=a$ and, eliminating v, we have

$$
a=\frac{Q-(P+4 p) \sin \alpha}{P+6 p} g=0.98 \mathrm{~m} / \sec ^{2}
$$

Problem 35. One end of a string passing over a pulley O (Fig. 64) is wound on a cylinder of radius R and weight P; attached to the other end is a load D of weight Q. If $v_{C 0}=0$, determine the velocity v_{C} of the centre C of the cylinder after it has travelled a distance s, and the acceleration a_{C} of the centre. The coefficient of rolling friction of the cylinder is k, the radius of gyration of the cylinder with respect to its axis is ϱ. Neglect the mass of the string and the pulley

Solution. 1) We use Eq. (5.39) to determine the velocity v_{C} :

$$
T-T_{0}=\sum A_{k}^{e} .
$$

In our case $T_{0}=0$ and $T=T_{c y l}+T_{D}$. From Eqs. (4.7), (5.22), and (5.24),

$$
T_{D}=\frac{1}{2} \frac{Q}{g} v_{D}^{2}, \quad T_{c y l}=\frac{1}{2} \frac{P}{g} v_{C}^{2}+\frac{1}{2}\left(\frac{P}{g} \varrho^{2}\right) \omega^{2} .
$$

As point B is the instantaneous centre of zero velocity,

$$
\omega=\frac{v_{C}}{R}, \quad \text { and } \quad v_{D}=v_{A}=2 v_{C} .
$$

Consequently,

$$
T=\frac{1}{2 g}\left[4 Q+P\left(1+\frac{\varrho^{2}}{R^{2}}\right)\right] v_{C}^{2} .
$$

The forces doing work are \boldsymbol{Q} and the couple ($\boldsymbol{N}, \quad \boldsymbol{P}$). As $v_{D}=2 v_{C}$, the displacement of load D is $h=2 s$, and $A(\boldsymbol{Q})=Q \cdot 2 s$. The work done by the forces

Fig. 64 opposing the rolling can be found from Eq. (5.34), as $N=P=$ const. Then,

$$
\sum A_{k}^{e}=2 Q s-\frac{k}{R} P s
$$

Substituting the found expressions, we obtain

$$
\frac{1}{2 g}\left[4 Q+P\left(1+\frac{\varrho^{2}}{R^{2}}\right)\right] v_{C}^{2}=\left(2 Q-\frac{k}{R} P\right) s,
$$

whence

$$
v_{C}=\sqrt{\frac{2 g(2 Q R-k P) R s}{4 Q R^{2}+P\left(R^{2}+\varrho^{2}\right)}} .
$$

2) As in the preceding problem, to determine a_{C} differentiate both sides of the last equation with respect to time. Taking into account that $\frac{d s}{d t}=v_{C}$, we finally obtain

$$
a_{C}=\frac{(2 Q R-k P) R}{4 Q R^{2}+P\left(R^{2}+\varrho^{2}\right)} g .
$$

Problem 36. Referring to Fig. 65, a spiral spring is attached to gear l of radius r and weight P and to crank $O C$ of length l and weight Q on which the gear is mounted. Gear l rolls on a fixed gear 2 of radius $R=l-r$. The moment of the spring $M_{s p}=c \alpha$, where α is the angle of rotation of gear l with respect to the crank. Neglecting friction, determine the period of vibration of the crank if it is disturbed from its position of equilibrium. The mechanism works in a horizontal plane.

Solution. We shall define the position of the crank by the angle φ measured from its equilibrium position. To exclude the unknown reaction of axis C from the computation, consider gear l and the crank as a single system and develop the differential equation of its motion from Eq. (5.38).

First, compute the kinetic energy T of the system in terms of the angular velocity $\omega_{c r}$ of the crank (as we are developing the

Fig. 65 law of motion of the crank). We have:

$$
\begin{aligned}
& T=T_{\text {cr }}+T_{\text {gear }}=\frac{1}{2} J_{0 c r} \omega_{c r}^{2}+ \\
& \frac{1}{2} \frac{P}{g} v_{C}^{2}+\frac{1}{2} J_{C_{\text {gear }}} \omega_{\text {gear }}^{2}
\end{aligned}
$$

Considering the crank as a homogeneous rod and the gear as a uniform disc, and taking into account that the point of contact is the instantaneous centre of zero velocity of gear 1 , we have

$$
\begin{gathered}
J_{0 c r}=\frac{1}{3} \frac{Q}{g} l^{2}, \quad J_{C_{g e a r}}=\frac{1}{2} \frac{P}{g} r^{2} \\
v_{C}=\omega_{c r} l, \quad \omega_{g e a r}=\frac{v_{C}}{r}=\frac{l}{r} \omega_{c r}
\end{gathered}
$$

Note again that Eq. (5.24) which is used to compute $T_{\text {gear }}$, contains the absolute angular velocity of the gear, not its relative velocity of rotation with respect to the crank. Substituting all the determined quantities, we finally obtain

$$
T=\frac{1}{12 g}(2 Q+9 P) l^{2} \omega_{c r}^{2}
$$

Now let us compute the elemental work. In this case no external forces do any work, therefore, $d A^{e}=0$. The elemental work done by the elastic force of the spring (an internal force) in turning the gear through an angle α about the crank is $d A^{i}=$ $-M_{s p} d \alpha=-c \alpha d \alpha$ (the minus sign indicates that the moment is directed opposite the direction through which the gear is turned). As we are seeking the law of motion of the crank, let us express angle α in terms of φ. As $R \varphi=r \alpha$,

$$
\frac{\alpha}{R}=\frac{\varphi}{r}, \alpha=\frac{l-r}{r} \varphi \text { and } d A^{i}=-c \frac{(l-r)^{2}}{r^{2}} \varphi d \varphi .
$$

Writing now the equation $d T=d A^{i}$, we have

$$
\frac{1}{6 g}(2 Q+9 P) l^{2} \omega_{c r} \cdot d \omega_{c r}=-c \frac{(l-r)^{2}}{r^{2}} \varphi d \varphi
$$

Dividing through by $d t$ and taking into account that $\frac{d \varphi}{d t}=\omega_{\text {cr }}$ and $\frac{d \omega_{c r}}{d t}=\frac{d^{2} \varphi}{d t^{2}}$, we finally obtain the differential equation of motion of the system in the form

$$
\frac{d^{2} \varphi}{d t^{2}}+k^{2} \varphi=0
$$

where

$$
k^{2}=\frac{6 g c(l-r)^{2}}{(2 Q+9 P) l^{2} r^{2}}
$$

This equation is a differential equation of harmonic motion. When moved from its equilibrium position the crank will perform simple harmonic motion the period of which will be

$$
T=\frac{2 \pi}{k}=2 \pi \frac{l r}{l-r} \sqrt{\frac{2 Q+9 P}{6 g c}}
$$

Problem 37. A wheel of radius R and weight P rotates on its axis O with an angular velocity ω_{0} (Fig. 66). A brake shoe is applied to the wheel at some instant with a force \boldsymbol{Q}. The coefficient of friction of the shoe on the wheel is f. Neglecting friction in the axle and the weight of the spokes, determine in how many seconds the wheel will stop.

Solution. Taking into account Eqs. (5.18), (5.20) and considering the moment positive in the direction of the rotation, we have

$$
J_{O} \frac{d \omega}{d t}=-f Q r,
$$

as the force of friction $F_{f r}=f Q$. From this, integrating, we obtain

$$
J_{O} \omega=-f Q r t+C_{1} .
$$

According to the initial conditions, at $t=0$, $\omega=\omega_{0}$, consequently $C_{1}=J_{o} \omega_{0}$, and finally

$$
\omega=\omega_{0}-\frac{f Q r}{J o} t
$$

Fig. 66

At $t=t_{1}$, when the wheel stops, $\omega=0$. Substituting this expression and taking into account that for the rim (a ring) $J_{O}=\frac{P}{g} r^{2}$, we obtain

$$
t_{1}=\frac{J o \omega_{0}}{f Q r}=\frac{P r \omega_{0}}{f Q g} .
$$

If we want to determine the number of revolutions of the wheel until it stops, it is more convenient to apply the theorem of the change in kinetic energy.

Problem 38. A vertical cylindrical rotor whose moment of inertia with respect to its axis is J_{z} (Fig. 67) is made to revolve by an applied torque M_{t}. Determine how the angular velocity ω of the rotor will change during the motion if $\omega_{0}=0$ and the moment of the resisting force of the air is proportional to ω, i.e., $M_{\text {res }}=\mu \omega$.

Solution. The differential equation of the rotation of the rotor has the form (assuming the moments in the direction of rotation to be positive)

$$
J_{z} \frac{d \omega}{d t}=M_{t}-\mu \omega .
$$

Separating the variables and assuming $\frac{\mu}{J_{z}}=n$, we have

Fig. 67

$$
-\mu \frac{d \omega}{M_{t}-\mu \omega}=-n d t,
$$

whence, integrating, we find

$$
\ln \left(M_{t}-\mu \omega\right)=-n t+\ln C .
$$

As, at $t=0, \omega=0$, then $C=M_{t}$, and

$$
\ln \frac{M_{t}-\mu \omega}{M_{t}}=-n t
$$

or

$$
\frac{M_{t}-\mu \omega}{M_{t}}=e^{-n t}
$$

and finally we obtain

$$
\omega=\frac{M_{t}}{\mu}\left(1-e^{-n t}\right)
$$

The angular velocity of the rotor increases with time and tends towards the limiting value $a_{l i m}=\frac{M_{t}}{\mu}$.

Problem 39. A uniform circular cylinder rolls down an inclined plane without slipping (Fig. 68). Neglecting rolling friction, determine the acceleration of the centre of the cylinder and the limiting impending slip.

Solution. Let us introduce the following notations: α for the angle of inclination of the surface, \boldsymbol{P} for the weight of the cylinder, R for its radius, and \boldsymbol{F} for the limiting friction of impending slip. Let us also direct the x axis along the inclined plane and the y axis perpendicular to it.

As the centre of mass of the cylinder does not move parallel to the y axis, $a_{C y}=0$, and the sum of the projections of all the forces on the y

Fig. 68 axis is also zero. Thus, $N=P \cos \alpha$.

Take into account that $a_{C x}=a_{C}$. Neglecting rolling friction and taking the direction of rotation of the cylinder as the positive direction of the moment of force, we find

$$
M a_{C}=P \sin \alpha-F, \quad J_{c} \varepsilon=F R
$$

These equations contain three unknown quantities J_{c}, ε and F (we cannot consider $F=f N$ here, because this equality is valid only when the point of contact slides on the surface; when there is no sliding it is possible for $F \leq f N$. We obtain an additional relationship between the unknown quantities if we take into account that in pure rolling $v_{c}=\omega R$, whence, differentiating, we have $a_{c}=\varepsilon R$. For uniform cylinder $J_{c}=0,5 M R^{2}$, then the second of equations takes the form

$$
\frac{1}{2} M a_{C}=F
$$

Substituting this expression of F into the first of equations, we obtain $a_{c}=$ $\frac{2}{3} g \sin \alpha$.

Now we find $F=\frac{1}{3} P \sin \alpha$.
This is the friction force that must act on the rolling cylinder if it is not to slip. It was pointed out before that $F=f N$. Conslequently, pure rolling takes place when

$$
\frac{1}{3} P \sin \alpha \leq f P \cos \alpha \text { or } f \geq \frac{1}{3} \tan \alpha
$$

If the coefficient of friction is less than this, force F cannot attain the obtained value, and the cylinder will slip. In this case v_{c} and ω are not related by the equality $v_{c}=\omega R$ (the point of contact is not the instantaneous centre of zero velocity), but
now F has a limiting value, i.e., $f N=f P \cos \alpha$, and equations take the form

$$
\frac{P}{g} a_{c}=P(\sin \alpha-f \cos \alpha), \quad \frac{1}{2} \frac{P}{g} R^{2} \varepsilon=f P R \cos \alpha
$$

whence

$$
a_{c}=g(\sin \alpha-f \cos \alpha), \quad \varepsilon=\frac{2 g f}{R} \cos \alpha .
$$

In this case the centre of the cylinder moves with acceleration a_{c}, while the cylinder itself rotates with an angular acceleration ε.

Problem 40. Solve the previous problem taking into account the resistance to rolling, assuming the coefficient of rolling friction to be k.

Solution. In order to give an example of another method of computation, let us find a_{c} with the help of the theorem of the change in kinetic energy, i.e., the equation

$$
d T=d A^{e} .
$$

In our case,

$$
T=\frac{3}{4} M v_{C}^{2} .
$$

Only the force \boldsymbol{P} and the resisting moment perform any work. The work done by forces \boldsymbol{F} and \boldsymbol{N} in rolling is zero. Then, taking into account Eq. (5.33), we obtain (see Fig. 68, but now with force \boldsymbol{N} shifted by the value k in the direction of the motion):

$$
d A^{e}=P \sin \alpha \cdot d s_{C}-\frac{k}{R} N d s_{C}=P\left(\sin \alpha-\frac{k}{R} \cos \alpha\right) d S_{C} .
$$

Substituting the determined quantities and dividing through by $d t$, we have

$$
\frac{3}{2} \frac{P}{g} v_{C} \frac{d v_{C}}{d t}=P\left(\sin \alpha-\frac{k}{R} \cos \alpha\right) \frac{d s_{C}}{d t} .
$$

The last multiplier is equal to v_{C}, and we finally obtain

$$
a_{C}=\frac{2}{3} g\left(\sin \alpha-\frac{k}{R} \cos \alpha\right) .
$$

At $k=0$ this formula gives the result of the previous problem.
The frictional force can now be found from the equation $M a_{C}=P \sin \alpha-F$, which does not change its form.

Problem 41. A uniform cylinder of weight P and radius r starts rolling from rest without slipping from a point on a cylindrical surface of radius R defined by angle φ_{0} (Fig. 69).

Determine: 1) The pressure of the cylinder on the surface for any angle $\varphi ; 2$) The law of motion of the cylinder when angle φ_{0} is small. Neglect rolling friction.

Solution. 1) Acting on the cylinder in any position is force \boldsymbol{P}, the normal reaction N, and the frictional force F, without which rolling is impossible. The path of the centre C is known: a circle of radius $R-r$. To determine N we make use of equations (5.5). Directing the normal $C n$ inwards to the path and projecting all forces on this normal, we obtain

$$
M \frac{v_{C}^{2}}{R-r}=N-P \cos \varphi .
$$

The quantity v_{C} in this equation can be found from the theorem of the change in kinetic energy:

$$
T-T_{0}=\sum A_{k}^{e} .
$$

In our case $T_{0}=0$ and $T=\frac{3}{4} M v_{C}^{2}$ (see Problem 29). Only force \boldsymbol{P} does any work, consequently,

$$
\begin{gathered}
\sum_{r} A_{k}^{e}=P h=P(R- \\
r)\left(\cos \varphi-\cos \varphi_{0}\right),
\end{gathered}
$$

and equation takes the form

Fig. 69

$$
\frac{3}{4} M v_{C}^{2}=P(R-r)\left(\cos \varphi-\cos \varphi_{0}\right) .
$$

Computing from here $M v_{C}^{2}$, we obtain finally

$$
N=\frac{P}{3}\left(7 \cos \varphi-4 \cos \varphi_{0}\right) .
$$

If, for example, $\varphi_{0}=60^{\circ}$ and $\varphi=0^{\circ}$, then $N=\frac{5}{3} P$.
2) To determine the law of motion of point C, differentiate equation with respect to time. We obtain

$$
\frac{3}{2} \frac{P}{g} v_{C} \frac{d v_{C}}{d t}=-P(R-r) \sin \varphi \frac{d \varphi}{d t} .
$$

In our case angle φ decreases when the cylinder moves, and $\frac{d \varphi}{d t}<0$. Then

$$
v_{C}=(R-r)\left|\frac{d \varphi}{d t}\right|=-(R-r) \frac{d \varphi}{d t} ; \frac{d v_{C}}{d t}=-(R-r) \frac{d^{2} \varphi}{d t^{2}} .
$$

Substituting these expressions into the previous equation, we obtain finally

$$
\frac{d^{2} \varphi}{d t^{2}}+\frac{2}{3} \frac{g}{R-r} \sin \varphi=0 .
$$

If angle φ_{0} is small, then, as $\varphi \leq \varphi_{0}$, we can assume that $\sin \varphi \approx \varphi$, and the equation takes the form

$$
\frac{d^{2} \varphi}{d t^{2}}+k^{2} \varphi=0
$$

where

$$
k^{2}=\frac{2}{3} \frac{g}{R-r} .
$$

Consequently (see §3.1), the centre of the cylinder performs simple harmonic motion, its period being

$$
T=\frac{2 \pi}{k}=2 \pi \sqrt{\frac{3(R-r)}{2 g}} .
$$

Problem 42. The body in Fig. 70 rests at B on a piezoelectric sensor of an instrument for measuring pressure, and at A it is attached to a string $A D$.

When the system is in equilibrium, $A C$ is horizontal and the pressure at B is $Q=Q_{0}$. Determine the moment of inertia J_{C} of the body with respect to an axis through the centre of mass C, if at the instant when the string is severed the pressure at B becomes Q_{1}, and the distance l is known.

Solution. 1) In the equilibrium position $Q_{0} l=P(l-a)$, whence

$$
a=\frac{P-Q_{0}}{P} l
$$

2) When the string is severed, the body

Fig. 70 begins plane motion. Its displacement in the initial time increment can be neglected. Then Eqs. (5.6) and (5.19), which are valid only for this initial time interval, will take the form

$$
M a_{C_{x}}=P-Q_{1}, a_{C_{y}}=0, J_{C} \varepsilon=Q_{1} a .
$$

As $a_{C_{y}}=0$, point C starts moving vertically down and point B slides horizontally (assuming the friction in the support to be very small). Erecting perpendiculars to the directions of these displacements, we find that the instantaneous centre of zero velocity is at point K. Consequently, $v_{C}=\omega a$. Assuming $a=$ const. for the elementary time interval, we obtain, after differentiating, $a_{C}=a \varepsilon$. Then the first of equations gives

$$
\frac{P}{g} a \varepsilon=P-Q_{1}
$$

Determining ε from here, we obtain finally

$$
J_{C}=\frac{Q_{1} a}{\varepsilon}=\frac{P}{g} \frac{Q_{1}}{P-Q_{1}} a^{2} .
$$

Problem 43. The weight of a motor car together with its wheels is P, the weight of each wheel is p, and their radii are r (Fig. 71). Acting on the rear (driving) wheels is a turning moment M_{t}. The car starts from rest and is subjected to the resistance of the air, which is proportional to the square of the translational velocity: $R=\mu v^{2}$. The

Fig. 71 frictional moment acting on the axle of each wheel is $M_{f r}$. Neglecting rolling friction, determine 1) the maximum velocity of the car; 2) the sliding friction acting on the driving and driven wheels during motion.

Solution. 1) To determine the maximum velocity, write the equation of motion from Eq. (5.38):

$$
d T=d A^{e}+d A^{i} .
$$

The kinetic energy of the car is equal to the energy of the body plus the energy of the wheels. Taking into account that P is the weight of the whole car and $v_{C}=$ ωr, and denoting the radius of gyration of each wheel by the symbol ϱ we obtain

$$
T=\frac{1}{2} \frac{P}{g} v_{C}^{2}+4\left(\frac{1}{2} J_{C} \omega^{2}\right)=\frac{1}{2 g}\left(P+4 p \frac{\varrho^{2}}{r^{2}}\right) v_{C}^{2} .
$$

Of all the external forces, only the resistance of the air does work, as we have neglected rolling resistance, and in this case the work done by the frictional forces F_{1} and F_{2} of the wheels on the road is zero. Therefore,

$$
d A^{e}=-\mu v_{C}^{2} d s_{C} .
$$

The work done by the internal forces (the torque and the friction in the axes) is

$$
d A^{i}=\left(M_{t}-4 M_{f r}\right) d \varphi=\left(M_{t}-4 M_{f r}\right) \frac{d s_{C}}{r} .
$$

Substituting all these expressions and dividing through by $d t$ we obtain

$$
\frac{1}{g}\left(p+4 p \frac{\varrho^{2}}{r^{2}}\right) v_{C} \frac{d v_{C}}{d t}=\frac{1}{r}\left(M_{t}-4 M_{f r}-\mu r v_{C}^{2}\right) \frac{d s_{C}}{d t}
$$

from which, cancelling out $v_{C}=\frac{d s_{C}}{d t}$, we find

$$
\left(P+4 p \frac{\varrho^{2}}{r^{2}}\right) a_{C}=\frac{g}{r}\left(M_{t}-4 M_{f r}-\mu r v_{C}^{2}\right)
$$

When the velocity reaches its limiting value, the acceleration a_{C} becomes zero. Therefore $v_{C}^{\text {lim }}$ can be found from the equation

$$
M_{t}-4 M_{f r}-\mu r v_{C}^{2}=0,
$$

whence

$$
v_{C}^{l i m}=\sqrt{\frac{M_{t}-4 M_{f r}}{\mu r}}
$$

2) To determine the frictional forces acting on each wheel, we deduce the equations of the rotation of the wheels about their axes. For the driving wheels, taking into account that the frictional force $\boldsymbol{F}_{\mathbf{1}}$ acting on each of them is directed forward, we obtain

$$
2 \frac{p}{g} \varrho^{2} \varepsilon=M_{t}-2 M_{f r}-2 F_{1} r .
$$

Since in rolling $a_{C}=\varepsilon r$, we obtain finally

$$
F_{1}=\frac{0.5 M_{t}-M_{f r}}{r}-\frac{\varrho^{2}}{r^{2}} \frac{p}{g} a_{C} .
$$

The frictional force $\boldsymbol{F}_{\mathbf{2}}$ acting on each of the driven wheels is directed backwards. Therefore, for the driven wheels we have

$$
\frac{p}{g} \varrho^{2} \varepsilon=F_{2} r-M_{f r},
$$

whence

$$
F_{2}=\frac{M_{f r}}{r}+\frac{\varrho^{2}}{r^{2}} \frac{p}{g} a_{C} .
$$

6. THE PRINCIPLES OF DYNAMICS

6.1. D'Alembert's Principle for a Particle and a System

Consider a particle M moving along a given fixed curve or surface (Fig. 72). The resultant of all the active forces applied to the particle is denoted by the symbol \boldsymbol{F}^{a}. If the action of the constraint is replaced by its reaction \boldsymbol{N}, the particle can be considered as a free one moving under the action of forces \boldsymbol{F}^{a} and \boldsymbol{N}. Let us see what force \boldsymbol{F}^{i} should be added to the forces \boldsymbol{F}^{a} and \boldsymbol{N} to balance them. If the resultant of the forces \boldsymbol{F}^{a} and \boldsymbol{N} is \boldsymbol{R}, then, obviously, the required

Fig. 72 force $\boldsymbol{F}^{i}=-\boldsymbol{R}$.

Let us express force \boldsymbol{F}^{i} in terms of the acceleration of the moving particle. As, according to the fundamental law of dynamics, $\boldsymbol{R}=m \boldsymbol{a}, \boldsymbol{F}^{i}=-m \boldsymbol{a}$.

The force \boldsymbol{F}^{i}, equal in magnitude to the product of the mass of the particle and its acceleration and directed oppositely to the acceleration, is called the inertia force of the particle.
Thus, if to the forces \boldsymbol{F}^{a} and \boldsymbol{N} is added the inertia force \boldsymbol{F}^{i}, the forces will be balanced, and we will have

$$
\begin{equation*}
\boldsymbol{F}^{a}+\boldsymbol{N}+\boldsymbol{F}^{i}=0 . \tag{6.1}
\end{equation*}
$$

This equation states D'Alembert's principle for a particle: if at any given moment to the active forces and the reactions of the constraints acting on a particle is added the inertia force, the resultant force system will be in equilibrium and all the equations of statics will apply to it.

D'Alembert's principle provides a method of solving problems of dynamics by developing equations of motion in the form of equations of equilibrium.

In applying D'Alembert's principle it should always be remembered that actually only forces \boldsymbol{F}^{a} and \boldsymbol{N} are acting on a particle and that the particle is in motion. The inertia force does not act on a moving particle and the concept is introduced for the sole purpose of developing equations of dynamics with the help of the simpler methods of statics.

D'Alembert's Principle for a System. Consider a system of n particles. Let us select any particle of mass m_{k} and denote the resultants of all the external and internal forces applied to it by the symbols $\boldsymbol{F}_{k}^{e x t}$ and $\boldsymbol{F}_{k}^{i n t}$. If we add to these forces the inertia force $\boldsymbol{F}_{k}^{i}=-m_{k} \boldsymbol{a}_{k}$, then according to D'Alembert's principle for a single particle the force system $\boldsymbol{F}_{k}^{e x t}, \boldsymbol{F}_{k}^{\text {int }}, \boldsymbol{F}_{k}^{i}$ will be in equilibrium, and consequently,

$$
\boldsymbol{F}_{k}^{e x t}+\boldsymbol{F}_{k}^{\text {int }}+\boldsymbol{F}_{k}^{i}=0 .
$$

Reasoning similarly for all the particles of the system, we arrive at the following result, which expresses D'Alembert's principle for a system: if at any moment of time to the effective external and internal forces acting on every particle of a system are
added the respective inertia forces, the resultant force system will be in equilibrium and all the equations of statics will apply to it.

We know from statics that the geometrical sum of balanced forces and the sum of their moments with respect to any centre 0 are zero; we know, further, from the principle of solidification, that this holds good not only for forces acting on a rigid body, but for any deformable system. Thus, according to D'Alembert's principle, we must have

$$
\begin{gathered}
\sum_{\left(\boldsymbol{F}_{k}^{e x t}+\boldsymbol{F}_{k}^{\text {int }}+\boldsymbol{F}_{k}^{i}\right)=0,}\left[\left[\boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e x t}\right)+\boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{\text {int }}\right)+\boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{i}\right)\right]=0 .\right.
\end{gathered}
$$

Let us introduce the following notation:

$$
\boldsymbol{R}^{i}=\sum \boldsymbol{F}_{k}^{i}, \boldsymbol{M}_{0}^{i}=\sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{i}\right) .
$$

The quantities \boldsymbol{R}^{i} and \boldsymbol{M}_{0}^{i} are respectively the principal vector of the inertia forces and their principal moment with respect to a centre 0 . Taking into account that the sum of the internal forces and the sum of their moments are each zero we obtain

$$
\begin{equation*}
\sum \boldsymbol{F}_{k}^{e x t}+\boldsymbol{R}^{i}=0, \sum \boldsymbol{m}_{0}\left(\boldsymbol{F}_{k}^{e x t}\right)+\boldsymbol{M}_{0}^{i}=0 . \tag{6.2}
\end{equation*}
$$

Use of Eqs. (6.2), which follow from D'Alembert's principle, simplifies the process of problem solution because the equations do not contain the internal forces. Actually Eqs. (6.2) are equivalent to the equations expressing the theorems of the change in the momentum and the total angular momentum of a system, differing from them only in form.

6.2. The Principal Vector and the Principal Moment of the Inertia Forces of a Rigid Body

It follows from the Statics that a system of inertia forces applied to a rigid body can be replaced by a single force equal to \boldsymbol{R}^{i} and applied at the centre 0 , and a couple of moment \boldsymbol{M}_{0}^{i}. The principal vector of a system, it will be recalled, does not depend on the centre of reduction and can be computed at once. As $\boldsymbol{F}_{k}^{i}=-m_{k} \boldsymbol{a}_{k}$, then taking into account $\S 5.3$, we will have:

$$
\begin{equation*}
\boldsymbol{R}^{i}=-\sum m_{k} \boldsymbol{a}_{k}=-M \boldsymbol{a}_{c} . \tag{6.3}
\end{equation*}
$$

Thus, the principal vector of the inertia forces of a moving body is equal to the product of the mass of the body and the acceleration of its centre of mass, and is opposite in direction to the acceleration.

Let us determine the principal moment of the

Fig. 73 inertia forces for particular types of motion.

1. Translational Motion. In this case a body has no rotation about its centre of mass C, from which we conclude that $\sum \boldsymbol{m}_{C}\left(\boldsymbol{F}_{k}^{e x t}\right)=0$, and Eq. (6.2) gives $\boldsymbol{M}_{C}^{i}=0$.

Thus, in translational motion, the inertia forces of a rigid body can be reduced to a single resultant \boldsymbol{R}^{i} through the centre of mass of the body.
2. Plane Motion. Let a body have a plane of symmetry, and let it be moving parallel to the plane. By virtue of symmetry, the principal vector and the resultant couple of inertia forces lie, together with the centre of mass C, in that plane.

Therefore, placing the centre of reduction in point C, we obtain from Eq. (6.2) $M_{C}^{i}=-\sum m_{C}\left(\boldsymbol{F}_{k}^{e x t}\right)$. On the other hand (see $\left.\S 5.9,5.10\right), \sum m_{C}\left(\boldsymbol{F}_{k}^{e x t}\right)=J_{C} \varepsilon$. We conclude from this that

$$
\begin{equation*}
M_{C}^{i}=-J_{C} \varepsilon \tag{6.4}
\end{equation*}
$$

Thus, in such motion a system of inertia forces can be reduced to a resultant force \boldsymbol{R}^{i} (Eq. (6.3)) applied at the centre of mass C (Fig. 73) and a couple in the plane of symmetry of the body whose moment is given by Eq. (6.4). The minus sign shows that the moment M_{C}^{i} is in the opposite direction of the angular acceleration of the body.
3. Rotation about an Axis through the Centre of Mass. Let a body have a plane of symmetry, and let the axis of rotation Cz be normal to the plane through the centre of mass. This case will thus be a particular case of the previous motion. But here $\boldsymbol{a}_{c}=0$, and consequently, $\boldsymbol{R}^{i}=0$.

Thus, in this case a system of inertia forces can be reduced to a couple in the plane of symmetry of the body of moment

$$
M_{z}^{i}=-J_{C} \varepsilon
$$

In applying Eqs. (6.3) and (6.4) to problem solutions, the magnitudes of the respective quantities are computed and the directions are shown in a diagram.

6.3. Virtual Displacements of a System. Degrees of Freedom

In determining the equilibrium conditions of a system by the methods of socalled graphical statics we had to consider the equilibrium of every body separately, replacing the action of all applied constraints by the unknown reaction forces. When the number of bodies in a system is large, this method becomes cumbersome, involving the solution of a large number of equations with many unknown quantities.

Now we shall make use of a number of kinematical and dynamical concepts to investigate a more general method for the solution of problems of statics, which makes it possible to determine at once, the equilibrium conditions for any mechanical system. The basic difference between this method and the methods of geometrical statics is that the action of constraints is taken into account not by introducing the reaction forces but by investigating the

Fig. 74 possible displacements of a system if its equilibrium were disturbed. These displacements are known in mechanics by the name of virtual displacements.

Virtual displacements of the particles of a system must satisfy two conditions: 1) they must be infinitesimal, since if a displacement is finite the system will
occupy a new configuration in which the equilibrium conditions may be different; 2) they must be consistent with the constraints of the system, as otherwise we should change the character of the mechanical system under consideration. For instance, in the crankshaft mechanism in Fig. 74, a displacement of the points of the crank $O A$ into configuration $O A_{1}$ cannot considered as a virtual displacement, as the equilibrium conditions under the action of forces P and Q will be have changed. At the same time, even an infinitesimal displacement of point B of the connecting rod along $B D$ would not be a virtual displacement: it would have been possible if the slides at B were replaced by a rocker, i.e., if it were a different mechanism.

Thus, we shall define as a virtual displacement of a system the sum total of any arbitrary infinitesimal displacements of the particles of the system consistent with all the constraints acting on the system at the given instant. We shall denote the virtual displacement of any point by an elementary vector $\delta \boldsymbol{s}$ in the direction of the displacement.

In the most general case, the particles and bodies of a system may have a number of different virtual displacements (not considering $\delta \boldsymbol{s}$ and - $\delta \boldsymbol{s}$ as being different). For every system, however, depending on the type of constraints, we can specify a certain number of independent virtual displacements such that any other virtual displacements will be obtained as their geometrical sum. For example, a bead lying on a horizontal plane can move in many directions on the plane. Nevertheless, any virtual displacement $\delta \boldsymbol{s}$ may be produced as the sum of two displacements $\delta \boldsymbol{s}_{1}$ and $\delta \boldsymbol{s}_{2}$ along two mutual perpendicular horizontal axes ($\delta \boldsymbol{s}=\delta \boldsymbol{s}_{1}+\delta \boldsymbol{s}_{2}$).

The number of possible mutually independent displacements of a system is called the number of degrees of freedom of that system. Thus, a bead on a plane (regarded as a particle) has two degrees of freedom. A crankshaft mechanism, evidently, has one degree of freedom. A free particle has three degrees of freedom (three independent displacements along mutually perpendicular axes). A free rigid body has six degrees of freedom (three translational displacements along orthogonal axes and three rotations about those axes).

Ideal Constraints. If a particle has for a constraint a smooth surface, the reaction \boldsymbol{N} of the constraint is normal to the surface and the elementary work done by the force \boldsymbol{N} in any virtual displacement of the particle is zero. It was shown that if we neglect rolling friction, the sum of the work done by the reaction forces \boldsymbol{N} and $\boldsymbol{F}_{f r}$ in any virtual displacement of a rolling body is also zero. The internal forces of any non-deformable system also possess this property.

Let us introduce the following notation: the elementary work done by an active force \boldsymbol{F}^{a} in any virtual displacement $\delta \boldsymbol{s}$ - the virtual work-shall be denoted by the symbol $\delta A^{a}\left(\delta A^{a}=F^{a} \delta s \cos \alpha\right.$, where α is the angle between the directions of the force and the displacement), and the virtual work done by the reaction \boldsymbol{N} of a constraint, by the symbol δA^{N}. Then for all the constraints considered here,

$$
\begin{equation*}
\sum \delta A_{k}^{N}=0 . \tag{6.5}
\end{equation*}
$$

Constraints, in which the sum of the virtual work produced by all the reaction forces in any virtual displacement of a system is zero, are called ideal constraints.

We have seen that to such constraints belong all frictionless constraints along which a body slides and all rough constraints when a body rolls along them, neglecting rolling friction.

6.4. The Principle of Virtual Work

Consider a system of material particles in equilibrium under the action of the applied forces and constraints, assuming all the constraints imposed on the system to be ideal. Let us take an arbitrary particle belonging to the system and denote the resultant of all the applied active forces (both external and internal) by the symbol \boldsymbol{F}_{k}^{a}, and the resultant of all the reactions of the constraints (also external and internal) by the symbol \boldsymbol{N}_{k}. Then, since this particle is in equilibrium together with the system, $\boldsymbol{F}_{k}^{a}+\boldsymbol{N}_{k}=0$ or $\boldsymbol{N}_{k}=-\boldsymbol{F}_{k}^{a}$.

Consequently, in any virtual displacement of the particle the virtual work δA_{k}^{a} and δA_{k}^{N} done by the forces \boldsymbol{F}_{k}^{a} and \boldsymbol{N}_{k} are equal in magnitude and opposite in sense and therefore vanish, i.e., we have:

$$
\delta A_{k}^{a}+\delta A_{k}^{N}=0
$$

Reasoning in the same way we obtain similar equations for all the particles of a system, adding which we obtain

$$
\sum \delta A_{k}^{a}+\sum \delta A_{k}^{N}=0
$$

But from the property of ideal constraints (6.5), the second summation is zero, whence

$$
\begin{equation*}
\sum \delta A_{k}^{a}=0, \tag{6.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum\left(F_{k}^{a} \delta s_{k} \cos \alpha_{k}\right)=0 \tag{6.7}
\end{equation*}
$$

or

We have thus proved that if a mechanical system with ideal constraints is in equilibrium, the active forces applied to it satisfy the condition (6.6). The reverse is also true, i.e., if the active forces satisfy the condition (6.6), the system is in equilibrium. From this follows the principle of virtual work: the necessary and sufficient conditions for the equilibrium of a system subjected to ideal constraints is that the total virtual work done by all the active forces is equal to zero for any and all virtual displacements consistent with the constraints. Mathematically the necessary and sufficient condition for the equilibrium of any mechanical system is expressed by Eq. (6.6).

In analytical form this condition can be expressed as follows:

$$
\begin{equation*}
\sum\left(F_{k x}^{a} \delta x_{k}+F_{k y}^{a} \delta y_{k}+F_{k z}^{a} \delta z_{k}\right)=0 \tag{6.8}
\end{equation*}
$$

In Eq. (6.8) $\delta x_{k}, \delta y_{k}, \delta z_{k}$ are the projections of the virtual displacements $\delta \boldsymbol{s}_{k}$ of point on the coordinate axes. They are equal to the infinitesimal increments to the position coordinates of the point in its displacement and are computed in the same way as the differentials of coordinates.

The principle of virtual work provides in general form the equilibrium conditions of any mechanical system, whereas the methods of geometrical statics require the consideration of the equilibrium of every body of the system separately.

Furthermore, application of the principle of virtual work requires that only the active forces be considered and makes it possible to ignore all the unknown reactions of constraints, when the constraints are ideal.

6.5. The General Equation of Dynamics

The principle of virtual work gives a general method for solving problems of statics. On the other hand, D'Alembert's principle makes it possible to employ the methods of statics in solving dynamical problems. It seems obvious that by combining both these principles we can develop a general method for the solution of problems of dynamics.

Consider a system of material particles subjected to ideal constraints. If we add to all the particles subjected to active forces \boldsymbol{F}_{k}^{a} and the reaction forces \boldsymbol{N}_{k} the corresponding inertia forces $\boldsymbol{F}_{k}^{i}=-m_{k} \boldsymbol{a}_{k}$, then by D'Alembert's principle the resulting force system will be in equilibrium. If we now apply the principle of virtual work, we obtain

$$
\sum \delta A_{k}^{a}+\sum \delta A_{k}^{i}+\sum \delta A_{k}^{N}=0
$$

But from Eq. (6.5) the last summation is zero, and we finally obtain

$$
\begin{equation*}
\sum \delta A_{k}^{a}+\sum \delta A_{k}^{i}=0 \tag{6.9}
\end{equation*}
$$

Equation (6.9) represents the general equation of dynamics. It states that in a moving system with ideal constraints the total virtual work done by all the active forces and all the inertia forces in any virtual displacement is zero at any instant.

In analytical form Eq. (6.9) gives

$$
\begin{equation*}
\sum\left[\left(F_{k x}^{a}+F_{k x}^{i}\right) \delta x_{k}+\left(F_{k y}^{a}+F_{k y}^{i}\right) \delta y_{k}+\left(F_{k z}^{a}+F_{k z}^{i}\right) \delta z_{k}\right]=0 . \tag{6.10}
\end{equation*}
$$

Equation (6.9) and (6.10) make it possible to develop the equations of motion for any mechanical system.

If a system consists of a number of rigid bodies, the relevant equations can be developed if to the active forces applied to each body are added a force equal to the principal vector of the inertia forces applied at any center, and a couple of moment equal to the principal moment of the inertia forces with respect to that center. Then the principle of virtual work can be used.

6.6. Solution of Problems

Problem 44. When a train accelerates, a load attached to a string hanging from the ceiling of a carriage deflects by an angle α from the vertical (Fig. 75).Determine the acceleration of the carriage.

Solution. Acting on the load is the force of gravity \boldsymbol{P} and the reaction of the thread \boldsymbol{T}. Applying D'Alembert's principle, add to these

Fig. 75
forces the inertia force $\boldsymbol{F}^{\boldsymbol{i}}$ directed opposite to the acceleration \boldsymbol{a} of the carriage. In magnitude $F^{i}=m a=\frac{P}{g} a$. The forces $\boldsymbol{P}, \boldsymbol{T}$ and $\boldsymbol{F}^{\boldsymbol{i}}$ are balanced. Constructing a closed force triangle and taking into account that $\varphi=\alpha$, we find

$$
F^{i}=P \tan \alpha \text { or } \frac{P}{g} a=P \tan \alpha .
$$

Hence, the acceleration of the carriage is $a=g$ tan α.

Problem 45. Neglecting the mass of all the rotating parts of the centrifugal-type governor in Fig. 76 as compared with the mass of the balls B and D, determine the angle α defining the position of relative equilibrium of rod $A B$ of length l if the governor rotates with a constant angular velocity ω.

Solution. In order to determine the position of relative equilibrium (with respect to a set of axes rotating together with the governor) add, according to Eq. (6.1), to the force of gravity \boldsymbol{P} and the reaction \boldsymbol{N} acting on ball B the transport inertia force $\boldsymbol{F}_{t r}^{i}$. As ω const, $a_{t r}=a_{t r}^{n}=$ $B C \omega^{2}=l \omega^{2} \sin \alpha$, whence $F_{t r}^{i}=m l \omega^{2} \sin \alpha$. Writing the equilibrium equation for the projections on axis $B \tau$, which is perpendicular to

Fig. 76 $A B$, we have

$$
-P \sin \alpha+F_{t r}^{i} \cos \alpha=0
$$

Hence, substituting $F_{t r}^{i}$ for its expression and eliminating $\sin \alpha$ (not considering the solution for $\alpha=0$), we obtain

$$
-g+l \omega^{2} \cos \alpha=0
$$

whence

$$
\cos \alpha=\frac{g}{l \omega^{2}} .
$$

As $\cos \alpha \leq 1$, equilibium at $\alpha \neq 0$ is possible only when $\omega^{2}>\frac{g}{l}$.

Problem 46. The semicircle $B C D$ of radius R in Fig. 77 rotates about a vertical axis with a constant angular velocity ω. A ring M starts slipping along it without friction from a point B slightly off the axis of rotation. Determine the relative velocity v_{1} of the ring at point C if its initial velocity $v_{0}=0$.

Solution. The velocity v_{1}, can be determined from the theorem of the change in kinetic energy. In order to write Eq. (5.36), which expresses the theorem, compute the work done by forces \boldsymbol{P} and $\boldsymbol{F}_{t r}^{i}$, where $F_{t r}^{i}=m \omega^{2} x$ (the

Fig. 77
work done by the reaction \boldsymbol{N} is zero). Assuming approximately $x_{B}=0$, we obtain

$$
A_{(B C)}\left(\boldsymbol{F}_{t r}^{i}\right)=\int_{(B)}^{(C)} F_{t r x}^{i} d x=m \omega^{2} \int_{0}^{R} x d x=\frac{1}{2} m \omega^{2} R^{2} .
$$

Furthermore, $A_{(B C)}(\boldsymbol{P})=P R$. Substituting these expressions into Eq. (5.36) and taking into account that $v_{0}=0$, we have

$$
\frac{m v_{1}^{2}}{2}=m R\left(g+\frac{1}{2} \omega^{2} R\right),
$$

whence

$$
v_{1}=\sqrt{2 g R\left(1+\frac{\omega^{2} R}{2 g}\right)}
$$

Problem 47.Two weights P_{1} and P_{2} are connected by a thread and move along a horizontal plane under the action of a force \boldsymbol{Q} applied to the first weight (Fig. 78a). The coefficient of friction of the weights on the plane is f. Determine the accelerations of the weights and the tension in the thread.

Solution. Denote all the external forces acting on the system and add to them the inertia forces of the weights. As both weights are translated with the same acceleration \boldsymbol{a}, then in magnitude

a

b

Fig. 78

$$
F_{1}^{i}=\frac{P_{1}}{g} a \text { and } F_{2}^{i}=\frac{P_{2}}{g} a .
$$

The forces are directed as shown. Then frictional forces are

$$
F_{1}=f P_{1}, F_{2}=f P_{2} .
$$

According to D'Alembert's principle, the force system must be in equilibrium. Writing the equilibrium equation in terms of the projections on horizontal axis, we find

$$
Q-f\left(P_{1}+P_{2}\right)-\frac{1}{g}\left(P_{1}+P_{2}\right) a=0
$$

whence

$$
a=\left(\frac{Q}{P_{1}+P_{2}}-f\right) g .
$$

Evidently, the weights will move if $f<\frac{Q}{P_{1}+P_{2}}$.
In our force system the required tension in the thread is an internal force. To determine it we divide the system and apply D'Alembert's principle to one of the weight, say the second (Fig. 78b). Acting on it is force \boldsymbol{P}_{2}, the normal reaction \boldsymbol{N}_{2}, the frictional force \boldsymbol{F}_{2}, and tension \boldsymbol{T} in the thread. Add to them the inertia force $\boldsymbol{F}_{2}^{\text {in }}$ and write the equilibrium in terms of the projection on horizontal axis. We have

$$
T-f P_{2}-\frac{P_{2}}{g} a=0
$$

Substituting the earlier found value of a, we obtain finally

$$
T=\frac{Q P_{2}}{P_{1}+P_{2}} .
$$

It is interesting to note that the tension in the thread does not depend on the friction and, given the same total weight of the system, it decreases with the reduction of the second (rear) weight. That is why, for example, in making up a goods train it is better to place the heavier vans closer to the locomotive.

Problem 48. Solve problem 22 with the help of D'Alembert's principle and also determine the tension in the thread.

Solution.1) Considering the drum and the load as a single system, we add to the bodies of the system inertia forces (Fig. 79). Load A is in translational motion and for it $R^{i}=\frac{Q}{g} a_{A}=\frac{Q}{g} r \varepsilon$. The inertia forces of the drum can be reduced to a couple of moment M_{0}^{i} equal in magnitude to $J_{0} \varepsilon=\frac{P}{g} \varrho^{2} \varepsilon$ and directed opposite the rotation. Writing now for all the forces the equilibrium conditions in the form $\sum m_{0}\left(\boldsymbol{F}_{k}\right)=0$, we obtain

$$
\left|M_{0}^{i}\right|+R^{i} r-Q r=0,
$$

or

$$
\frac{P}{g} \varrho^{2} \varepsilon+\frac{Q}{g} r^{2} \varepsilon-Q r=0,
$$

from which we find

b

Fig. 79

$$
\varepsilon=\frac{Q g r}{P \varrho^{2}+Q r^{2}} .
$$

2) Considering now load A separately and adding to the active forces \boldsymbol{Q} and \boldsymbol{T} the inertia force $\boldsymbol{R}^{\boldsymbol{i}}$, we obtain from the equilibrium conditions that the tension in the thread

$$
T=Q-R^{i}=Q\left(1-\frac{r \varepsilon}{g}\right)=\frac{P Q \varrho^{2}}{P \varrho^{2}+Q r^{2}} .
$$

Problem 49. Determine the forces acting on a spinning flywheel, assuming its mass to be distributed along the rim. The weight of the flywheel is P, its radius r and its angular velocity ω.

Solution. The required force is an internal one. In order to determine it, cut the rim into two and apply D'Alembert's principle to one portion (Fig. 80). We denote the action of the separated half by two equal forces \boldsymbol{F}^{\prime} equal in magnitude to the required force \boldsymbol{F}. For each element of the rim, the inertia force (a centrifugal force) is directed along the radius. These concurrent forces intersecting at O have a resultant equal to the principal vector $\boldsymbol{R}^{\boldsymbol{i}}$ of the inertia forces directed, by virtue of symmetry, along
axis $O x$. By Eq. (6.3), $R^{i}=m a_{C}=m x_{C} \omega^{2}$, where m is the mass of half the rim and x_{C} is the coordinate of the mass centre of the

Fig. 80 semicircular arc, which is equal to $\frac{2 r}{\pi}$. Therefore,

$$
m=\frac{P}{2 g}, R^{i}=\frac{P r \omega^{2}}{\pi g} .
$$

The equilibrium conditions give $2 F=R^{i}$, and finally

$$
F=\frac{P r \omega^{2}}{2 \pi g} .
$$

This formula can be used to determine the limiting angular velocity beyond which a flywheel made of a specific material may be torn apart.

Problem 50. A homogeneous rod $A B$ of length l and weight P is hinged at A to a vertical shaft rotating with an angular velocity ω (Fig. 81). Determine the tension T in the horizontal thread securing the rod at an angle α to the shaft.

Solution. Applying D'Alembert's principle, we add to the external forces $\boldsymbol{P}, \boldsymbol{T}, \boldsymbol{X}_{\boldsymbol{A}}$ and $\boldsymbol{Y}_{\boldsymbol{A}}$ acting on the rod the inertia forces. For each element of the rod of mass Δm the centrifugal inertia force

Fig. 81 is $\Delta m \omega^{2} x$, where x is the distance of the element from the axis of rotation $A y$. The resultant of these parallel forces distributed according to a linear law passes through the centre of gravity of triangle $A B E$, i.e., at a distance $h=\frac{2}{3} l \cos \alpha$ from the $A x$ axis. As this resultant is equal to the principal vector of the inertia forces, then, by Eq. (6.3),

$$
R^{i}=m a_{C}=m \omega^{2} x_{C}=\frac{P}{g} \omega^{2} \frac{1}{2} \sin \alpha
$$

(here x_{C} is the coordinate of the centre of gravity of the rod).

Writing now the statics equation
$\sum m_{A}\left(\boldsymbol{F}_{k}\right)=0$, we obtain
$T l \cos \alpha-R^{i} h-P \frac{l}{2} \sin \alpha=0$.
Substituting the values of R^{i} and h into this equation, we obtain finally

$$
T=P\left(\frac{l \omega^{2}}{3 g} \sin \alpha+\frac{1}{2} \tan \alpha\right)
$$

Problem 51. A homogeneous rod $A B$ of mass m and length l rotates about an axis perpendicular to it with an angular velocity ω and an angular acceleration ε (Fig. 82). Determine the stresses generated by the rotation in a cross section of the rod at a distance x from the axis.

Solution. The required forces are internal. To determine them, cut the rod into

Fig. 82

Fig. 83
two and consider the motion of portion $D B$ of length $a=1-x$ (Fig. 83). The action of the removed portion $A D$ is replaced by a force applied at the centre D of the cross section, which we shall represent by its components \boldsymbol{P} and \boldsymbol{Q}, and a couple of moment M_{D}. The quantities $\boldsymbol{P}, \boldsymbol{Q}$ and M_{D} will specify the required stresses in section D of the rod, i.e., the forces with which portions $A D$ and $D B$ act on one another. To compute these quantities we use D'Alembert's principle. First let us find the principal vector \boldsymbol{R}^{i} of the inertia forces of portion $D B$, and their principal moment M_{C}^{i} with respect to the centre of mass C of the portion. The mass of portion $D B$ and the coordinate $x_{C}=A C$ of its centre of mass are

$$
m_{1}=\frac{1-x}{l} m, x_{C} \frac{1+x}{2} .
$$

Then, form Eqs. (6.3), we find magnitude of vectors $\boldsymbol{R}_{\tau}^{i}$ and \boldsymbol{R}_{C}^{i} :

$$
\begin{aligned}
\left|\boldsymbol{R}_{\tau}^{i}\right| & =m_{1}\left|a_{c \tau}\right|=m_{1} x_{C}|\varepsilon|=m|\varepsilon| \frac{l^{2}-x^{2}}{2 l} \\
R_{C}^{i} & =m_{1} a_{c n}=m_{1} x_{C} \omega^{2}=m \omega^{2} \frac{l^{2}-x^{2}}{2 l} .
\end{aligned}
$$

Furthermore, from Eq. (6.4), $M_{C}^{i}=-J_{C} \varepsilon$. As in this case $J_{C}=\frac{m a^{2}}{12}$, then

$$
\left|M_{C}^{i}\right|=m \frac{(l-x)^{3}}{12 l}|\varepsilon| .
$$

The forces $\boldsymbol{R}_{\tau}^{i}$ and \boldsymbol{R}_{C}^{i} and the moment M_{C}^{i} are directed as shown in the Fig. 83 .
Thus, all the inertia forces of portion $D B$ of the rod are replaced by a force \boldsymbol{R}^{i} applied at C, whose components are $\boldsymbol{R}_{\tau}^{i}$ and \boldsymbol{R}_{C}^{i} and a couple of moment M_{C}^{i}. Writing now the equilibrium conditions $\sum F_{k x}=0, \sum F_{k y}=0, \sum m_{D}\left(\boldsymbol{F}_{k}\right)=0$ for the active forces and the inertia forces applied to portion $D B$, we obtain

$$
R_{C}^{i}-P=0 ; Q-\left|R_{\tau}^{i}\right|=0 ; M_{D}-\left|M_{C}^{i}\right|-\left|R_{\tau}^{i}\right| \frac{a}{2}=0 .
$$

From this we find finally that acting at section D of the rod are 1) a tensile force $P=R_{n}^{i}$ and 2) a transverse force $Q=\left|R_{\tau}^{i}\right|$, and 3) a couple with a bending moment

$$
M_{D}=\left|M_{C}^{i}\right|+\left|R_{\tau}^{i}\right| \frac{a}{2}=\frac{m|\varepsilon|}{12 l}\left[(l-x)^{3}+3(l+x)(l-x)^{2}\right],
$$

or finally

$$
M_{D}=\frac{m|\varepsilon|}{6 l}(l-x)^{2}(2 l+x) .
$$

The value of forces P, Q and the bending moment will be greatest at the cross section $x=0$.

Problem 52. Two equal bars of length l and weight p each are welded at right angles to a vertical shaft of length b at istance h from each other (Fig. 84). Determine the dynamical pressures acting on the shaft if it

Fig. 84 rotates with a constant angular velocity ω.

Solution. The centrifugal inertia forces in each rod are equal in magnitude:

$$
F_{1}^{i}=F_{2}^{i}=\frac{P}{g} \frac{1}{2} \omega^{2},
$$

and they make a couple which, apparently, is balanced by the couple $\boldsymbol{X}_{A}^{D}, \boldsymbol{X}_{\boldsymbol{B}}^{\boldsymbol{D}}$. The moments of these couples are equal in magnitude. Consequently, $X_{A}^{D} b=F_{1}^{i} h$, whence

$$
X_{A}^{D}=X_{B}^{D}=\frac{F_{1}^{i} h}{b}=\frac{p l h}{2 g b} \omega^{2} .
$$

The couple is continuously in the $A x z$ plane, which rotates with the body.

Problem 53. Find the relation between the moment M of the couple acting on the

Fig. 85 crankshaft mechanism in Fig. 85 and the pressure P on the piston when the system is in equilibrium. The crank is of length $O A=r$ and the connecting rod is of length $A B=l$.

Solution. Equilibrium conditions (6.6) give

$$
M \delta \varphi-P \delta s_{B}=0 \text { or } M \omega_{O A}=
$$

$P v_{B}$, since $\quad \delta \varphi=\omega_{O A} d t \quad$ and $\quad \delta s_{B}=$ $v_{B} d t$.The relation between v_{B} and $\omega_{O A}$ can be found by the methods of kinematics:

$$
v_{B}=\omega_{O A} r\left(1+\frac{r \cos \varphi}{\sqrt{l^{2}-r^{2} \sin ^{2} \varphi}}\right) \sin \varphi .
$$

Referring to this result, we find

$$
M=\operatorname{Pr}\left(1+\frac{r \cos \varphi}{\sqrt{l^{2}-r^{2} \sin ^{2} \varphi}}\right) \sin \varphi .
$$

Problem 54. For the reduction gear (fig. 86), find the relation between the torque M_{A} applied to the driving shaft A and the resistance moment M_{B} applied to the driven shaft B when both shafts are rotating uniformly.

The number of teeth in the gears is: $z_{1}=120, z_{2}=$ $40, z_{3}=30, z_{4}=50$.

Solution. The relation between M_{A} and M_{B} will be the same in uniform rotation as in equilibrium. Therefore, from Eq. (6.6) we have

$$
M_{A} \delta \varphi_{A}-M_{B} \delta \varphi_{B}=0 \text { or } M_{A} \omega_{A}=M_{B} \omega_{B},
$$

as $\delta \varphi_{A}=\omega_{A} d t$, and $\delta \varphi_{B}=\omega_{B} d t$. Hence, referring to the kinematic methods, we find

$$
\frac{\omega_{B}}{\omega_{A}}=1+\frac{z_{1} z_{3}}{z_{2} z_{4}}, M_{A}=\frac{\omega_{B}}{\omega_{A}} M_{B}=\left(1+\frac{z_{1} z_{3}}{z_{2} z_{4}}\right) M_{B}=2.8 M_{B} .
$$

Problem 55. Find the relation between forces P and Q in the hoisting mechanism in Fig. 87, whose parts are

Fig. 86
 housed in the box K, if it is known that in one revolution of the crank handle $A B=l$ the screw D moves out by h.

Solution. From Eq. (6.6) we have

$$
P l \delta \varphi_{A B}-Q \delta s_{D}=0 .
$$

Assuming that when the handle is rotated uniformly the screw also moves up uniformly, we have

$$
\frac{\delta \varphi_{A B}}{2 \pi}=\frac{\delta s_{D}}{h} \text { or } \delta \varphi_{A B}=\frac{2 \pi}{h} \delta s_{D} .
$$

Substituting this expression for $\delta \varphi_{A B}$ into the foregoing equation, we obtain

$$
Q=\frac{2 \pi l}{h} P .
$$

Note that this simple problem could just not be solved by the methods of geometrical statics as the parts of the mechanism are unknown.

Fig. 87
Problem 56. Two beams are hinged together at C and loaded as shown in Fig. $88 a$. Neglecting the weight of the beams, determine the pressure on support B.

Solution. Replace the support at B by a force \boldsymbol{N}_{B}, which is equal in magnitude to the required pressure (Fig. 88b). For a virtual displacement of the system Eq. (6.6) gives

$$
N_{B} \delta s_{B}-P \delta s_{E}=0 .
$$

The relation between δs_{B} and δs_{E} is found from the proportions

$$
\frac{\delta s_{B}{ }^{2}}{a}=\frac{\delta s_{C}}{l_{1}} ; \quad \frac{\delta s_{E}}{b}=\frac{\delta s_{C}{ }^{1}}{l_{2}}
$$

whence

$$
\delta s_{E}=\frac{b l_{1}}{a l_{2}} \delta s_{B},
$$

and consequently

$$
N_{B}=\frac{b l_{1}}{a l_{2}} P .
$$

If we used the methods of geometrical statics we would have to consider the equilibrium of each beam separately, introduce the reactions of the other supports, and then eliminate them from the obtained set of equilibrium equations.

Fig. 88

Problem 57. The epicycles gear train in Fig. 89 consists of a gear 1 of radius r_{1}, an arm $A B$ mounted on axle A independently of the gear, and a gear 2 of radius r_{2} mounted on the arm at B as shown. Acting on the arm is a torque M, and acting on the gears are resistance moments M_{1} and M_{2}, respectively. Determine the values of M_{1} and M_{2} at which the mechanism is in equilibrium.

Solution. The mechanism has two degrees of freedom, since it has two possible independent displacements: the rotation of the arm $A B$ when gear 1 is at rest, and the rotation of gear 1 when the arm is at rest. First consider a virtual displacement of the system in which gear 1 remains at rest (Fig. 89a). For this displacement Eq. (6.6) gives

Fig. 89

$$
M \delta \varphi_{A B}-M_{2} \delta \varphi_{2}=0
$$

But when gear 1 is at rest the contact point of the gears will be the instantaneous centre of zero velocity of gear 2 , and consequently $v_{B}=\omega_{2} r_{2}$. At the same time,

$$
v_{B}=\omega_{A B}\left(r_{1}+r_{2}\right) .
$$

Hence $\quad \omega_{2} r_{2}=\omega_{A B}\left(r_{1}+r_{2}\right)$ or $\delta \varphi_{2} r_{2}=$ $\delta \varphi_{A B}\left(r_{1}+r_{2}\right)$, and we obtain

$$
M_{2}=\frac{r_{2}}{r_{1}+r_{2}} M .
$$

Now consider a virtual displacement in which the arm $A B$ remains at rest (Fig. 89b). For this displacement Eq. (6.6) gives

$$
M_{1} \delta \varphi_{1}-M_{2} \delta \varphi_{2}=0 .
$$

But when the arm is at rest

$$
\frac{\delta \varphi_{2}}{\delta \varphi_{1}}=\frac{\omega_{2}}{\omega_{1}}=\frac{r_{1}}{r_{2}} \text { and } M_{1}=\frac{r_{1}}{r_{2}} M_{2} .
$$

We finally obtain

$$
M_{1}=\frac{r_{1}}{r_{1}+r_{2}} M, \quad M_{2}=\frac{r_{2}}{r_{1}+r_{2}} M .
$$

Problem 58. Determine the relation between forces Q and P at which the press in Fig. 90 is in equilibrium if angles α and β are known. Neglect the weight of the rods.
Solution. To give an example of the analytical method of solution, let us take equilibrium condition (6.8). Placing the origin of a coordinate system in the fixed point A and drawing the x and y axes as shown, we obtain

$$
Q_{1 x} \delta x_{1}+Q_{2 x} \delta x_{2}+P_{3 y} \delta y_{3}=0
$$

since all the other projections of the forces vanish.

To find $\delta x_{1}, \delta x_{2}, \delta y_{3}$ compute the coordinates x_{1}, x_{2}, y_{3} of the points of application of the forces, expressing them in terms of the angles α and β. Denoting the

Fig. 90 length of each rod by a, we obtain

$$
x_{1}=a \cos \alpha, x_{2}=a \cos \alpha+2 a \cos \beta, y_{3}=a(\sin \beta+\sin \alpha)
$$

differentiating which, we find $\delta x_{1}=-a \sin \alpha \delta \alpha, \delta x_{2}=-a(\sin \alpha \delta \alpha+$ $2 \sin \beta \delta \beta), \delta y_{3}=a(\cos \beta \delta \beta+\cos \alpha \delta \alpha)$.

Substituting these expressions and taking into account that $Q_{1 x}=Q, Q_{2 x}=-Q$, and $P_{3 y}=-P$, we have

$$
2 Q \sin \beta \delta \beta-P(\cos \beta \delta \beta+\cos \alpha \delta \alpha)=0
$$

To find the relation between $\delta \alpha$ and $\delta \beta$ we make use of the fact that $A B=$ const. Therefore, $2 a(\cos \alpha+\cos \beta)=$ const. Differentiating this equation, we obtain

$$
\sin \alpha \delta \alpha+\sin \beta \delta \beta=0 \text { and } \delta \alpha=-\frac{\sin \beta}{\sin \alpha} \delta \beta
$$

Substituting the expression for $\delta \alpha$, we have

$$
2 Q \sin \beta-P(\cos \beta-\cot \alpha \sin \beta)=0
$$

whence

$$
P=\frac{2 Q}{\cot \beta-\cot \alpha}
$$

At an angle β very close to α the pressure P will be very large.

Problem 59. A centrifugal-type governor consists of two balls A_{1} and A_{2} of weight P each (Fig. 91). The slide $C_{1} C_{2}$ weighs Q, the governor rotates about the vertical axis with a uniform angular velocity ω. Neglecting the weight of the rods, determine angle α, if $O A_{1}=O A_{2}=l$, and $O B_{1}=O B_{2}=B_{1} C_{1}=B_{2} C_{2}=a$.

Solution. Adding to the active forces P_{1}, P_{2} and Q_{3} the centrifugal inertia forces F_{1}^{i} and F_{2}^{i} (the inertia force of the slide will, evidently, be zero), we write the general equation of dynamics in the form (6.10). Computing the projections of all the forces on the coordinate axes, we have

$$
P_{1} \delta x_{1}+P_{2} \delta x_{2}-F_{1}^{i} \delta y_{1}+F_{2}^{i} \delta y_{2}+Q_{3} \delta x_{3}=0 .
$$

We also have

$$
\begin{gathered}
Q_{3}=Q ; \quad P_{1}=P_{2}=P ; \quad F_{1}^{i}=F_{2}^{i}= \\
=\frac{P}{g} a_{A}=\frac{P}{g} \omega^{2} l \sin \varphi .
\end{gathered}
$$

The coordinates of the points of application of the forces are

$$
\begin{gathered}
x_{1}=x_{2}=l \cos \varphi, \quad y_{2}=-y_{1}=l \sin \varphi, x_{3}= \\
=2 a \cos \varphi .
\end{gathered}
$$

Differentiating these expressions, we find

$$
\begin{array}{rlrl}
\delta x_{1}=\delta x_{2}=-l \sin \varphi \delta \varphi ; & \delta y_{2}=-\delta y_{1} \\
& =l \cos \varphi \delta \varphi ; & \delta x_{3}=-2 a \sin \varphi \delta \varphi .
\end{array}
$$

Fig. 91

Substituting all these expressions, we obtain

$$
\left(-2 P l \sin \varphi+2 \frac{P}{g} l^{2} \omega^{2} \sin \varphi \cos \varphi-2 Q a \sin \varphi\right) \delta \varphi=0,
$$

whence we finally have

$$
\cos \alpha=\frac{P l+Q a}{P l^{2} \omega^{2}} g .
$$

As $\cos \varphi \leq 1$, the balls will move apart when

$$
\omega^{2}>\frac{P l+Q a}{P l^{2}} g .
$$

Angle φ increases with ω and tends to 90° when $\omega \rightarrow \infty$.
Problem 60. In the hoist mechanism in Fig. 92, a torque M is applied to gear 2 of weight P_{2} and radius of gyration ϱ_{2}. Determine, the acceleration of the lifted load A of weight Q, neglecting the weight of the string and the friction in the axles. The drum on which the string winds and the gear 1 attached to it have a total weight P_{1} and a radius of gyration ϱ_{1}. The radii of the gears are r_{1} and r_{2}, and of the drum r.

Solution. Draw the active force \boldsymbol{Q} and torque M (forces $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$ do no work) and add to them the inertia force $\boldsymbol{F}_{\boldsymbol{A}}^{i}$ of the load and the couples of moments M_{1}^{i} and M_{2}^{i} to which the inertia forces of the rotating bodies are reduced. In magnitude these quantities are

Fig. 92

$$
\begin{gathered}
F_{A}^{i}=\frac{Q}{g} a_{A}, \quad\left|M_{1}^{i}\right|=\frac{P_{1}}{g} \varrho_{1}^{2} \varepsilon_{1}, \\
\left|M_{2}^{i}\right|=\frac{P_{2}}{g} \varrho_{2}^{2} \varepsilon_{2} .
\end{gathered}
$$

The directions of all the vectors are shown in the Fig 92. Eq. (6.9) for a virtual displacement of the system, we obtain

$$
\begin{gathered}
-\left(Q+F_{A}^{i}\right) \delta s_{A}-M_{1}^{i} \delta \varphi_{1}+(M- \\
\left.M_{2}^{i}\right) \delta \varphi_{2}=0
\end{gathered}
$$

Expressing all the displacements in terms of $\delta \varphi_{1}$, we have

$$
\begin{aligned}
& \delta s_{A}=r \delta \varphi_{1}, \quad \frac{\delta \varphi_{1}}{\delta \varphi_{2}}=\frac{\omega_{1}}{\omega_{2}}=\frac{r_{2}}{r_{1}} \\
& \text { and } \delta \varphi_{2}=\frac{r_{1}}{r_{2}} \delta \varphi_{1} .
\end{aligned}
$$

Finally the equation of motion takes the form

$$
Q\left(1+\frac{a_{A}}{g}\right) r+\frac{P_{1}}{g} \varrho_{1}^{2} \varepsilon_{1}+\frac{P_{2}}{g} \varrho_{2}^{2} \varepsilon_{2} \frac{r_{1}}{r_{2}}-M \frac{r_{1}}{r_{2}}=0 .
$$

Now express the quantities ε_{1} and ε_{2} in terms of the required acceleration a_{A} Taking into account that ε_{1} and ε_{2} are related in the same way as ω_{1} and ω_{2}, we obtain

$$
\varepsilon_{1}=\frac{a_{A}}{r}, \varepsilon_{2}=\frac{r_{1}}{r_{2}} \varepsilon_{1}=\frac{r_{1}}{r_{2}} \frac{a_{A}}{r} .
$$

And finally we have

$$
a_{A}=\frac{\frac{r_{1}}{r_{2}} M-r Q}{r Q+\frac{\varrho_{1}^{2}}{r} P_{1}+\frac{\varrho_{2}^{2} r_{1}^{2}}{r r_{2}^{2}} P_{2}} g
$$

Problem 61. One end of a thread is wound on a uniform cylinder of weight P_{1}

(Fig. 93). The thread passes over a pulley O, and its other end is attached to a load A of weight P_{2} which slides on a horizontal plane, the coefficient of friction being f. Neglecting the mass of the pulley, and the string, determine the acceleration of the load and of the centre C of the cylinder.

So1ution. If motion starts from rest, the centre of the cylinder C will move vertically, and the system has two degrees of freedom (the rotation of the cylinder with respect to the thread when the load is at rest and the displacement of the load when the cylinder does not rotate).

Add to the acting forces $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{2}}$, and $\boldsymbol{F}_{\boldsymbol{f} \boldsymbol{r}}$ the inertia forces of the cylinder reduced to a principal vector \boldsymbol{R}_{1}^{i} and a couple of moment M_{C}^{i}, and the inertia force $\boldsymbol{F}_{\boldsymbol{A}}^{\boldsymbol{i}}$ of the load. In magnitude

$$
F_{A}^{i}=\frac{P_{2}}{g} a_{A}, R_{1}^{i}=\frac{P_{1}}{g} a_{C},\left|M_{C}^{i}\right|=J_{C} \varepsilon=\frac{P_{1}}{2 g} r^{2} \frac{a_{C}-a_{A}}{r} .
$$

The last equality follows from the fact that, if point C of the cylinder has a velocity v_{C}, and point B (together with the string) a velocity $v_{B}=v_{A}$, then the angular velocity of the cylinder $\omega=\frac{v_{C}-v_{A}}{r}$, and, consequently, $\varepsilon=\frac{a_{C}-a_{A}}{r}$. Furthermore, for the cylinder $J_{C}=0.5 m r^{2}$, where r is the radius of the cylinder.

Now consider a virtual displacement δs_{A} of the system in which the cylinder does not rotate and is translated together with the load. The couple of moment M_{C}^{i} does no work in this displacement and from Eq. (6.9) we obtain

$$
\left(-F_{f r}-F_{A}^{i}-R_{1}^{i}+P_{1}\right) \delta s_{A}=0,
$$

whence, as $F_{f r}=f P_{2}$, we find

$$
\frac{P_{1}}{g} a_{C}+\frac{P_{2}}{g} a_{A}=P_{1}-f P_{2}
$$

Consider the other independent virtual displacement in which the load A remains at rest while the cylinder turns about point B (which in this displacement is the instantaneous centre of rotation) through angle $\delta \varphi$. For this displacement, Eq. (6.9) gives

$$
\left(P_{1}-R_{1}^{i}\right) r \delta \varphi-M_{C}^{i} \delta \varphi=0
$$

Substituting the expressions for R_{1}^{i} and M_{C}^{i} we obtain

$$
3 a_{C}-a_{A}=2 g
$$

Solving equations simultaneously, we obtain the required accelerations

$$
a_{A}=\frac{P_{1}-3 f P_{2}}{P_{1}+3 P_{2}} g, a_{C}=\frac{P_{1}+(2-f) P_{2}}{P_{1}+3 P_{2}} g .
$$

7. LAGRANGIAN DYNAMICS

7.1. Generalized Coordinates, Velocities and Accelerations

As the problems in dynamics become more complex it, naturally, becomes increasingly difficult to work out the solutions. This difficulty is associated not only with the solution of the equations of motion, but with their formulation as well. In fact, the derivation of the basic differential equations of motion in a form suitable for a particular complicated problem may well be the most difficult part of the investigation. A number of methods, more powerful than those hitherto considered in this manual, have been developed for deriving the equations for these more involved situations. Perhaps the most generally useful of these more advanced methods for engineering problems is that of Lagrange, who has put the basic equations of motion in such a form that the simplifying features of a particular problem can be utilized most advantageously. In the present chapter we shall derive Lagrange's equations.

One of the principal advantages of Lagrange's method is that one uses for each problem that coordinate system which most conveniently describes the motion. We have already seen that the position of a particle can be described in a large number of different ways, and we have found in the problems already discussed that the choice of a proper coordinate system may introduce a considerable simplification into the solution of a problem. In general, the requirement for a system of coordinates is that the specification of the coordinates must locate completely the position of each part of the system. This means that there must be one coordinate associated with each degree of freedom of the system. More exactly, there must be at least one coordinate associated with each degree of freedom. So called non-holonomic systems exist, for which, because of the particular geometrical constraints involved, more coordinates are required than there are degrees of freedom. Such systems are not often encountered and will not be considered here. We shall restrict the following treatment to systems whose coordinates are independent, in the sense that a change can be given to any one of the coordinates without changing any of the other coordinates. By the generalized coordinates $\left(q_{1}, q_{2}, \ldots q_{s}\right)$ we shall mean a set of independent coordinates, equal in number to the s degrees of freedom of the system. We use the word "generalized" to emphasize the fact that such coordinates are not necessarily of the type of the simple (x, y, z) or (r, θ, φ) systems and to indicate that they are not necessarily lengths or angles, but may be any quantity appropriate to the description of the position of the system.

The $\left(x_{k}, y_{k}, z_{k}\right)$ coordinates of a point k are expressible in terms of the generalized coordinates ($q_{1}, q_{2}, \ldots q_{s}$) by functional relations:

$$
\begin{align*}
& x_{k}=x_{k}\left(q_{1}, q_{2}, \ldots, q_{s}\right), \\
& y_{k}=y_{k}\left(q_{1}, q_{2}, \ldots, q_{s}\right), \tag{7.1}\\
& z_{k}=z_{k}\left(q_{1}, q_{2}, \ldots, q_{s}\right) .
\end{align*}
$$

For example, if $\left(q_{1}, q_{2}, q_{3}\right)$ are the cylindrical coordinates of a point (r, θ, φ),
the foregoing equations become:

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z .
$$

We have supposed that the relation between the coordinate systems does not involve time. In the more general treatment in which $x=x\left(q_{1}, q_{2}, \ldots q_{s}, t\right)$ analysis can proceed along essentially the same lines. The equations of motion in generalized coordinates for any particular system could always be obtained by writing the equations first in an (x, y, z) system, and then transforming to the q 's by Eqs.(7.1). This procedure usually leads to involved algebraic manipulations, and it is better to make the transformation in general terms and to write the equations of motion directly in generalized coordinates.

Thus, the parameters of any dimensions $\left(q_{1}, q_{2}, \ldots q_{s}\right)$ describing the configuration of the system in space are called generalized coordinates. Their first derivatives with respect to time $\left(\dot{q}_{1}, \dot{q}_{2}, \ldots \dot{q}_{s}\right)$ are called generalized velocities and the second derivatives ($\ddot{q}_{1}, \ddot{q}_{2}, \ldots \ddot{q}_{s}$) are said to be generalized accelerations.

7.2. Generalized Forces

Let the q_{i}, for $i=1, s$, be a set of generalized coordinates which uniquely specifies the instantaneous position of some dynamical system which has s degrees of freedom. Here, it is assumed that each of q_{i} can vary independently. Since the generalized coordinates are independent, their elemental increments $\left(\delta q_{1}, \delta q_{2}, \ldots \delta q_{s}\right)$ are also independent. Each of these quantities defines a virtual displacement of the system. Let the system be under the action of the active forces $\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{2}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}$. Since the radius-vector of any point is a function of their coordinates $\boldsymbol{r}_{k}=x_{k} \boldsymbol{i}+y_{k} \boldsymbol{j}+z_{k} \boldsymbol{k}$, one can write

$$
\begin{equation*}
\boldsymbol{r}_{\boldsymbol{k}}=\boldsymbol{r}_{\boldsymbol{k}}\left(q_{1}, q_{2}, \ldots q_{s}\right) \tag{7.2}
\end{equation*}
$$

We now calculate the virtual (elementary) work in terms of displacements of the n particles assumed to make up the system and the forces $\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}, \ldots, \boldsymbol{F}_{\boldsymbol{n}}$ acting on them. The virtual work is

$$
\begin{equation*}
\sum \delta A_{k}^{a}=\sum_{k=1}^{n} \boldsymbol{F}_{k} \cdot \delta \boldsymbol{r}_{k} . \tag{7.3}
\end{equation*}
$$

Now, since $\boldsymbol{r}_{k}=x_{k} \boldsymbol{i}+y_{k} \boldsymbol{j}+z_{k} \boldsymbol{k}$, we can write:

$$
\begin{equation*}
\delta \boldsymbol{r}_{k}=\sum_{i=1}^{s} \frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}} \delta q_{i} \tag{7.4}
\end{equation*}
$$

for $k=1, n$.
Substituting (7.4) into (7.3), one can obtain

$$
\sum \delta A_{k}^{a}=\sum_{k=1}^{n} \boldsymbol{F}_{k} \sum_{i=1}^{s} \frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}} \delta q_{i} .
$$

The above expression can be rearranged to give

$$
\begin{equation*}
\sum \delta A_{k}^{a}=\sum_{i=1}^{s} Q_{i} \cdot \delta q_{i} \tag{7.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{i}=\sum_{k=1}^{n} \boldsymbol{F}_{k} \frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}} . \tag{7.6}
\end{equation*}
$$

Here the Q_{i} are called generalized forces. Note that generalized forces do not necessarily have the dimensions of force. However, the product $Q_{i} \delta q_{i}$ must have the
dimension of work. Thus, if particular q_{i} is a lineal parameter, then the associated Q_{i} is a force. Conversely, if q_{i} is an angle, then Q_{i} is a torque.

Formula (7.5) represents the elementary work of the acting forces in terms of generalized coordinates. This definition of the Q_{i} indicates the way in which they can be determined in specific problems. To find Q_{i}, the total work done by all of external forces during an infinitesimal displacement δq_{i} of one of the coordinates is calculated, and Q_{i} is then obtained by dividing this total work by δq_{i}.

Thus, the generalized forces are coefficients of the increments of the generalized coordinates in the expression for the total elementary work of all forces applied to the system. It is obvious that the number of generalized forces is equal to the number of degrees of freedom.

If the forces acting on the system are conservative, their total elementary work can be written $\delta A=-\delta \Pi$, where Π is a potential energy of the system which is a function of the coordinates x_{k}, y_{k}, z_{k}. But these coordinates are the functions of generalized coordinates. Thus, $\Pi=\Pi\left(q_{1}, q_{2}, \ldots, q_{s}\right)$. Calculating a total differential of this function, one can obtain

$$
\delta A=-\delta \Pi=-\left[\frac{\partial \Pi}{\partial q_{1}} \delta q_{1}+\frac{\partial \Pi}{\partial q_{2}} \delta q_{2}+\cdots+\frac{\partial \Pi}{\partial q_{s}} \delta q_{s}\right]
$$

Comparing this expression with equation (7.5) we have

$$
\begin{equation*}
Q_{1}=-\frac{\partial \Pi}{\partial q_{1}}, Q_{2}=-\frac{\partial \Pi}{\partial q_{2}}, \ldots, Q_{s}=-\frac{\partial \Pi}{\partial q_{s}} . \tag{7.7}
\end{equation*}
$$

Therefore, when the forces applied to the system are conservative, generalized forces are the partial derivatives of the potential energy of the system with respect to correspondent generalized coordinates taken with sign minus.

7.3. Conditions of Equilibrium in Terms of Generalized Coordinates

In accordance with principle of virtual works the necessary and sufficient conditions for the equilibrium of a system subjected to ideal constraints is that the total virtual work done by all the active forces is equal to zero for any and all virtual displacements consistent with the constraints, so $\sum_{k=1}^{n} \delta A_{k}=0$. In terms of generalized coordinates this condition, taking into account equation (7.5), can be written

$$
\sum_{i=1}^{S} Q_{i} \cdot \delta q_{i}=0
$$

Since δq_{i}, as independent variables, can not be equal to 0 , the generalized forces Q_{i} must disappear in an equilibrium position, i.e., $Q_{i}=0, i=1,2, \ldots, s$.

Upon solving the above equations with respect to s unknown generalized coordinates q_{i}, one may always obtain all possible system's equilibrium positions.

Hence, a holonomic system with perfect constraints is in its equilibrium only if all generalized forces corresponding to generalized coordinates are equal to zero.

For conservative systems, taking into account Eq.(7.7), we have

$$
\frac{\partial \Pi}{\partial q_{1}}=0, \frac{\partial \Pi}{\partial q_{2}}=0, \frac{\partial \Pi}{\partial q_{s}}=0
$$

7.4. Lagrange's Equations of Motion

Let us consider the general equation of dynamics:

$$
\begin{equation*}
\sum \delta A_{k}^{a}+\sum \delta A_{k}^{i n}=0 \tag{7.8}
\end{equation*}
$$

where δA_{k}^{a} and $\delta A_{k}^{i n}$ are virtual works of applied impressed forces and inertial forces respectively.

By analogy with Eq.(7.5) one can write

$$
\sum \delta A_{k}^{i n}=\sum_{i=1}^{s} Q_{i}^{i n} \cdot \delta q_{i}
$$

where $Q_{i}^{i n}$ are generalized forces of inertia which can be defined as

$$
\begin{equation*}
Q_{i}^{i n}=\sum_{k=1}^{n} \boldsymbol{F}_{\boldsymbol{k}}^{i n} \frac{\partial r_{k}}{\partial q_{i}} . \tag{7.9}
\end{equation*}
$$

Then from Eq.(7.8) we have for $i=1, \ldots, s$

$$
\begin{equation*}
Q_{i}+Q_{i}^{i n}=0 \tag{7.10}
\end{equation*}
$$

Let us express $Q_{i}^{i n}$ in terms of kinetic energy T. Since $\boldsymbol{F}_{\boldsymbol{k}}^{i n}=-m_{k} \boldsymbol{a}_{\boldsymbol{k}}=$ $=-m_{k} \frac{d v_{k}}{d t}$, Eq.(7.9) yields

$$
\begin{equation*}
-Q_{i}^{i n}=\sum_{k=1}^{n} m_{k} \frac{d v_{k}}{d t} \frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}} . \tag{7.11}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{d v_{k}}{d t} \frac{\partial r_{k}}{\partial q_{i}}=\frac{d}{d t}\left(\boldsymbol{v}_{\boldsymbol{k}} \cdot \frac{\partial r_{k}}{\partial q_{i}}\right)-\boldsymbol{v}_{\boldsymbol{k}} \frac{d}{d t}\left(\frac{\partial r_{k}}{\partial q_{i}}\right) . \tag{7.12}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial r_{k}}{\partial q_{i}}\right)=\frac{\partial}{\partial q_{i}}\left(\frac{d r_{k}}{d t}\right)=\frac{\partial v_{k}}{\partial q_{i}} . \tag{7.13}
\end{equation*}
$$

Any position vector associated with holonomic system has the form of Eq.(7.2). Since the generalized coordinates are themselves functions of time, the first derivative of the position vector with respect to time is

$$
\begin{equation*}
\dot{\boldsymbol{r}}_{\boldsymbol{k}}=\sum_{i=1}^{S} \frac{\partial \boldsymbol{r}_{\boldsymbol{k}}}{\partial q_{i}} \dot{q}_{i} \tag{7.14}
\end{equation*}
$$

where $\dot{\boldsymbol{r}}_{\boldsymbol{k}}=\frac{d \boldsymbol{r}_{\boldsymbol{k}}}{d t}, \dot{q}_{i}=\frac{d q_{i}}{d t}$.
Since all position vectors do not depend on \dot{q}_{i}, the partial derivative $\frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}}$ do not depend on \dot{q}_{i} either. Hence, $\frac{\partial}{\partial \dot{q}_{i}}\left(\frac{\partial r_{k}}{\partial q_{i}}\right)=0$.

Therefore, differentiation of Eq. (7.14) with respect to \dot{q}_{i} yields

$$
\begin{equation*}
\frac{\partial \boldsymbol{r}_{k}}{\partial q_{i}}=\frac{\partial \dot{\boldsymbol{r}}_{k}}{\partial \dot{q}_{i}}=\frac{\partial v_{k}}{\partial \dot{q}_{i}} \tag{7.15}
\end{equation*}
$$

Making use of formulas (7.13) and (7.15), expression (7.12) can be written

$$
\frac{d v_{\boldsymbol{k}}}{d t} \cdot \frac{\partial \boldsymbol{r}_{\boldsymbol{k}}}{\partial q_{i}}=\frac{d}{d t}\left(\boldsymbol{v}_{\boldsymbol{k}} \cdot \frac{\partial v_{\boldsymbol{k}}}{\partial \dot{q}_{i}}\right)-\boldsymbol{v}_{\boldsymbol{k}} \cdot \frac{\partial \boldsymbol{v}_{\boldsymbol{k}}}{\partial q_{i}}=\frac{d}{d t}\left(\frac{1}{2} \frac{\partial v_{\boldsymbol{k}}^{2}}{\partial \dot{q}_{i}}\right)-\frac{1}{2} \frac{\partial v_{\boldsymbol{k}}^{2}}{\partial q_{i}} .
$$

Taking into account that mass is constant, the Eq. (7.11) yields

$$
\begin{equation*}
-Q_{i}^{i n}=\frac{d}{d t}\left[\frac{\partial}{\partial \dot{q}_{i}}\left(\sum_{k=1}^{n} \frac{m_{k} v_{k}^{2}}{2}\right)\right]-\frac{\partial}{\partial q_{i}}\left(\sum_{k=1}^{n} \frac{m_{k} v_{k}^{2}}{2}\right)=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}, \tag{7.16}
\end{equation*}
$$

where $T=\sum_{k=1}^{n} \frac{m_{k} v_{k}^{2}}{2}$ is kinetic energy of a system.
Hence, from Eq.(7.10) we have finally

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}=Q_{i} \tag{7.17}
\end{equation*}
$$

where $i=1, \ldots, s$.
Eqs. (7.17) are called Lagrange's equations. They represent the differential equations of motion of a system in terms of generalized coordinates. It is obvious that their number is equal to the number of degrees of freedom of a system.

If all impressed forces acting on a system are conservative, one can obtain taking into account formulas (7.7)

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial \Pi}{\partial q_{i}}=0 \text { or } \frac{d}{d t}\left(\frac{\partial(T-\Pi)}{\partial \dot{q}_{i}}\right)-\frac{\partial(T-\Pi)}{\partial q_{i}}=0 . \tag{7.18}
\end{equation*}
$$

The last equation is valid since a potential energy Π depends only on generalized coordinates and does not depend on generalized velocities. Hence,

$$
\frac{\partial \Pi}{\partial \dot{q}_{i}}=0 .
$$

It is helpful to introduce a function L, called the Lagrangian, which is defined as the difference between the kinetic and potential energies of the dynamical system under investigation: $L=T-\Pi$. Then, from (7.18), we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0 . \tag{7.19}
\end{equation*}
$$

7.5. Solution of Problems

Problem 62. Resolve problem 61 by means of Lagrange's equations.
Solution. Mechanical system has two
 degrees of freedom (the rotation of the cylinder with respect to the thread, when the load A is at rest, and the displacement of the load when the cylinder does not rotate, fig. 94).

Let us choose as generalized coordinates displacement of bodies with thread S_{A} and angle of rotation of cylinder φ. Then we have two independent virtual displacements δs_{A} and $\delta \varphi$. Now consider a virtual displacement δs_{A} of the system in which the cylinder does not rotate and is translated together with the load. The force $\boldsymbol{P}_{\mathbf{2}}$ does no work in this displacement. There are forces $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{F}_{f r}$ which produce work on elemental displacement δs_{A}. It equals

$$
\delta A=\left(-F_{f r}+P_{1}\right) \delta s_{A},
$$

whence, as $F_{f r}=P_{2} f$, we find generalized force corresponding to generalized coordinate S_{A},

$$
Q_{S_{A}}=P_{1}-f P_{2}
$$

Consider the other independent virtual displacement in which the load A remains at rest while the cylinder turns about point B (which in this displacement is the instantaneous centre of rotation) through angle $\delta \varphi$. For this displacement there is
only one force of the weight of the cylinder which produces work on elemental displacement $\delta \varphi$. It equals

$$
\delta A=P_{1} \delta s_{C}=P_{1} r \delta \varphi,
$$

where r is the radius of the cylinder. So we have found generalized force corresponding to generalized coordinate φ,

$$
Q_{\varphi}=P_{1} r .
$$

Now determine kinetic energy of a system. It equals $T=T_{1}+T_{2}$, where T_{1} is a kinetic energy of a cylinder and T_{2} is kinetic energy of a load.

Cylinder is in a resultant motion which consists of the transport motion (this is a motion of a tread with velocity v_{A}) and relative motion (this is a motion of a cylinder with respect to the thread, i.e., plane motion). Therefore,

$$
T_{1}=\frac{P_{1} v_{C}^{2}}{2 g}+\frac{I_{C} \omega^{2}}{2},
$$

where v_{C} is absolute velocity of the center C, J_{C} is a moment of inertia of cylinder and ω is its relative angular velocity since transport motion is a translational one).

From the problem 61 we have $J_{C}=0,5 m_{1} r^{2}$. Calculate v_{C} :

$$
v_{C}=v_{A}+r \omega .
$$

Taking into account that $v_{A}=\dot{s}_{A}$ and $\omega=\dot{\varphi}$, we have

$$
T_{1}=\frac{P_{1}\left(\dot{s}_{A}+r \dot{\varphi}\right)^{2}}{2 g}+\frac{P_{1} r^{2} \dot{\varphi}^{2}}{4 g} .
$$

Load A is in translational motion, then

$$
T_{2}=\frac{P_{2} v_{A}^{2}}{2 g}=\frac{P_{2} \dot{s}_{A}^{2}}{2 g} .
$$

Thus,

$$
T=\frac{P_{1}\left(\dot{s}_{A}+r \dot{\varphi}\right)^{2}}{2 g}+\frac{P_{1} r^{2} \dot{\varphi}^{2}}{4 g}+\frac{P_{2} \dot{s}_{A}^{2}}{2 g} .
$$

Motion of the system considered is governed by Lagrange's equations of the following form:

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{s}_{A}}\right)-\frac{\partial T}{\partial s_{A}}=Q_{S_{A}} \\
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\varphi}}\right)-\frac{\partial T}{\partial \varphi}=Q_{\varphi} .
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\frac{\partial T}{\partial \dot{s}_{A}}=\frac{P_{1}\left(\dot{s}_{A}+r \dot{\varphi}\right)}{g}+\frac{P_{2} \dot{s}_{A}}{g}, \quad \frac{\partial T}{\partial \dot{\varphi}}=\frac{P_{1}\left(\dot{s}_{A}+r \dot{\varphi}\right) r}{g}+\frac{P_{1} r^{2} \dot{\varphi}}{2 g}, \\
\frac{\partial T}{\partial s_{A}}=\frac{\partial T}{\partial \varphi}=0 .
\end{gathered}
$$

Hence, we have following Lagrange's equations:

$$
\begin{gathered}
P_{1}\left(\ddot{s}_{A}+r \ddot{\varphi}\right)+P_{2}{\ddot{{ }_{s}^{A}}}_{A}=g\left(P_{1}-f P_{2}\right), \\
2 \ddot{s}_{A}+3 r \ddot{\varphi}=2 g .
\end{gathered}
$$

But \ddot{s}_{A} is acceleration of the load A, i.e., a_{A}. At the same time it is a transport acceleration of the cylinder. The product $r \ddot{\varphi}=r \varepsilon$ represents relative acceleration of
the point C. Since relative and transport accelerations have the same sense, $\ddot{s}_{A}+$ $r \ddot{\varphi}=a_{C}$. Then we obtain

$$
\begin{gathered}
P_{1} a_{C}+P_{2} a_{A}=g\left(P_{1}-f P_{2}\right), \\
3 a_{C}-a_{A}=2 g .
\end{gathered}
$$

This set of equations gives

$$
a_{A}=\frac{P_{1}-3 f P_{2}}{P_{1}+3 P_{2}} g, a_{C}=\frac{P_{1}+(2-f) P_{2}}{P_{1}+3 P_{2}} g .
$$

Problem 63. An uniform and thin bar 2 of mass m and length l is hinged to link l which rotates with a constant angular speed ω (Fig. 95). Derive the differential equation of motion of link 2 by means of Lagrange's equations. Neglect the mass of the link 1 .

Fig. 95

$$
\boldsymbol{\omega}_{2}=\boldsymbol{i}_{2} \dot{\beta}+\boldsymbol{j}_{2} \omega \sin \beta+\boldsymbol{k}_{2} \omega \cos \beta .
$$

Its components are

$$
\omega_{2 x}=\dot{\beta}, \omega_{2 y}=\omega \sin \beta, \omega_{2 z}=\omega \cos \beta .
$$

The link 2 performs rotational motion about point O. The moment of inertia of the link 2 about z axis is zero. Hence, its total kinetic energy is

$$
T=\frac{1}{2} I\left(\omega_{2 x}^{2}+\omega_{2 y}^{2}\right)=\frac{1}{2} I\left(\dot{\beta}^{2}+\omega^{2} \sin ^{2} \beta\right) .
$$

There is only one force of the weight of the link 2 which produces work on elemental displacement $\delta \beta$. It equals $\delta A=-\frac{1}{2} m g l \sin \beta \delta \beta$. Hence, generelized force is $Q_{\beta}=-\frac{l}{2} m g l \sin \beta$.

Motion of the system considered is governed by Lagrange's equations of the following form:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\beta}}\right)-\frac{\partial T}{\partial \beta}=Q_{\beta},
$$

where

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\beta}}\right)=I \ddot{\beta}, \frac{\partial T}{\partial \beta}=I \omega^{2} \sin \beta \cos \beta .
$$

Then one can obtain

$$
I \ddot{\beta}-I \omega^{2} \sin \beta \cos \beta+\frac{1}{2} m g l \sin \beta=0 .
$$

Since $I=\frac{1}{3} m l^{2}$ the final form of equation of motion is

$$
\ddot{\beta}-\omega^{2} \sin \beta \cos \beta+\frac{3}{2 l} g \sin \beta=0 .
$$

Problem 64. The bead 1 which can be considered as a particle of mass m, may slides without any friction along the slide 2. The slide 2 rotates with the constant angular velocity ω about the vertical axis Z (Fig. 97). By means of Lagrange's equations derive equation of motion of the bead 1 and determine all possible equilibrium positions.

Given are: $R=25 \mathrm{~cm}, \omega=10 \mathrm{rad} / \mathrm{s}$.
Solution. The angle α can be considered as the generalized coordinate.

In Fig. 98 the inertial system of coordinates is denoted by XYZ. System of coordinates $x y z$ is rigidly attached to the slide and rotates with the angular velocity ω about

Fig. 97

Fig. 98.
axis Z. This is a transport angular velocity of the bead. The relative velocity of the bead is its velocity along slide. Vector of the absolute velocity of the bead l is

$$
\boldsymbol{v}_{a}=\boldsymbol{v}_{r}+\boldsymbol{v}_{t r},
$$

where $v_{r}=R \dot{\alpha}, v_{t r}=R \omega \sin \alpha$. Since $\boldsymbol{v}_{r} \perp \boldsymbol{v}_{t r}, v_{a}^{2}=\dot{\alpha}^{2} R^{2}+\omega^{2} R^{2} \sin ^{2} \alpha$.

Hence,

$$
T=\frac{m v_{a}^{2}}{2}=\frac{1}{2} m\left(\dot{\alpha}^{2} R^{2}+\omega^{2} R^{2} \sin ^{2} \alpha\right) .
$$

By analogy with problem $63 Q_{\alpha}=$ $-m g R \sin \alpha$. Lagrange's equations may be taken in the following form:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\alpha}}\right)-\frac{\partial T}{\partial \alpha}=Q_{\alpha}
$$

where

$$
\frac{\partial T}{\partial \dot{\alpha}}=m R^{2} \dot{\alpha}, \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\alpha}}\right)=m R^{2} \ddot{\alpha},
$$

$\frac{\partial T}{\partial \alpha}=m R^{2} \omega^{2} \sin \alpha \cos \alpha$.
Hence, these expressions yield equation
of motion

$$
m R^{2} \ddot{\alpha}-m \omega^{2} R^{2} \sin \alpha \cos \alpha+m g R \sin \alpha=0 .
$$

Since for the static equilibrium position $\dot{\alpha}=\ddot{\alpha}=0$, then, according to the last equation, we have

$$
\omega^{2} R \sin \alpha \cos \alpha=g \sin \alpha .
$$

Hence, the possible equilibrium positions are

$$
\alpha_{0}=0, \alpha_{0}=\pi, \alpha_{0}=\cos ^{-1} \frac{g}{\omega^{2} R}=\cos ^{-1} \frac{9.81}{10^{2} \cdot 0.25}= \pm 66.89^{\circ} .
$$

Problem 65. Fig. 99 shows an arm of a robot operating in the horizontal plane. Motion of the arm is controlled by two actuators installed at joints 0_{1} and 0_{2}. The actuators produce moments M_{1} and M_{2}. Derive differential equations of motion of the robot's arm.

Given are:
I_{1} - moment of inertia of the link 1 about a vertical axis through its centre of gravity G_{1}.
I_{2} - moment of inertia of the link 2 about a vertical axis through its centre of gravity G_{2}.
m_{1}, m_{2} - masses of the link 1 and 2 respectively.
$a_{1}, a_{2}, l_{1}, l_{2}$ - dimensions shown in Fig. 99.

Fig. 99

Fig. 100

Solution. The system considered has 2 degrees of freedom and the angles α_{1} and α_{2} may be considered as the generalized coordinates. Hence, Lagrange's equations for this case can be adopted in the following form:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\alpha}_{1}}\right)-\left(\frac{\partial T}{\partial \alpha_{1}}\right)=Q_{1}, \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\alpha}_{2}}\right)-\left(\frac{\partial T}{\partial \alpha_{2}}\right)=Q_{2} .
\end{aligned}
$$

The kinetic energy T is a sum of kinetic energy of the link 1 and kinetic energy of the link 2 .

$$
T_{1}=\frac{1}{2}\left(I_{1}+m_{1} a_{1}^{2}\right) \dot{\alpha}_{1}^{2}, \quad T_{2}=\frac{1}{2}\left(m_{2} v_{G 2}^{2}+I_{2} \dot{\alpha}_{2}^{2}\right),
$$

where $v_{G 2}$ is the absolute velocity of the centre of gravity G_{2}.
The position vector of centre of gravity G_{2} is (Fig. 100)

$$
\boldsymbol{r}_{G 2}=\boldsymbol{i}\left(l_{1} \cos \alpha_{1}+a_{2} \cos \alpha_{2}\right)+\boldsymbol{j}\left(l_{1} \sin \alpha_{1}+a_{2} \sin \alpha_{2}\right) .
$$

Its first derivative yields the velocity of the centre of gravity G_{2}

$$
\boldsymbol{v}_{G 2}=\boldsymbol{i}\left(-l_{1} \dot{\alpha}_{1} \sin \alpha_{1}-a_{2} \dot{\alpha}_{2} \sin \alpha_{2}\right)+\boldsymbol{j}\left(l_{1} \dot{\alpha}_{1} \cos \alpha_{1}+a_{2} \dot{\alpha}_{2} \cos \alpha_{2}\right) .
$$

Squared magnitude of the velocity is

$$
\begin{gathered}
v_{G 2}^{2}=\left(-l_{1} \dot{\alpha}_{1} \sin \alpha_{1}-a_{2} \dot{\alpha}_{2} \sin \alpha_{2}\right)^{2}+\left(l_{1} \dot{\alpha}_{1} \cos \alpha_{1}+a_{2} \dot{\alpha}_{2} \cos \alpha_{2}\right)^{2} \\
=l_{1}^{2} \dot{\alpha}_{1}^{2}+a_{2}^{2} \dot{\alpha}_{2}^{2}+2 l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \cos \left(\alpha_{1}-\alpha_{2}\right) .
\end{gathered}
$$

Upon introducing this expression, one can obtain

$$
T_{2}=\frac{1}{2} m_{2}\left(l_{1}^{2} \dot{\alpha}_{1}^{2}+a_{2}^{2} \dot{\alpha}_{2}^{2}+2 l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \cos \left(\alpha_{1}-\alpha_{2}\right)\right)+\frac{1}{2} I_{2} \dot{\alpha}_{2}^{2} .
$$

Hence, the total kinetic energy is
$T=T_{1}+T_{2}=\frac{1}{2}\left(I_{1}+m_{1} a_{1}^{2}\right) \dot{\alpha}_{1}^{2}+\frac{1}{2} m_{2}\left(l_{1}^{2} \dot{\alpha}_{1}^{2}+a_{2}^{2} \dot{\alpha}_{2}^{2}+2 l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \cos \left(\alpha_{1}-\right.\right.$ $\left.\alpha_{2}\right)+\frac{1}{2} I_{2} \dot{\alpha}_{2}^{2}$.

Since the robot operates in the horizontal plane, the only non-conservative forces acting on the system are the driving moments.

The virtual work produced by these forces is $\delta A=\left(M_{1}+M_{2}\right) \delta \alpha_{1}-M_{2} \delta \alpha_{2}$.
Therefore, the generalized forces are

$$
Q_{1}=M_{1}+M_{2}, \quad Q_{2}=-M_{2} .
$$

Then

$$
\begin{gathered}
\frac{\partial T}{\partial \alpha_{1}}=-2 m_{2} l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \sin \left(\alpha_{1}-\alpha_{2}\right), \frac{\partial T}{\partial \alpha_{2}}=2 m_{2} l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \sin \left(\alpha_{1}-\alpha_{2}\right), \\
\frac{\partial T}{\partial \dot{\alpha}_{1}}=\left(l_{1}+m_{1} a_{1}^{2}\right) \dot{\alpha}_{1}+m_{2}\left(l_{1}^{2} \dot{\alpha}_{1}+l_{1} a_{2} \dot{\alpha}_{2} \cos \left(\alpha_{1}-\alpha_{2}\right)\right), \frac{\partial T}{\partial \dot{\alpha}_{2}}=m_{2}\left(a_{2}^{2} \dot{\alpha}_{2}+\right. \\
\left.l_{1} a_{2} \dot{\alpha}_{1} \cos \left(\alpha_{1}-\alpha_{2}\right)\right)+I_{2} \dot{\alpha}_{2} .
\end{gathered}
$$

Therefore, the final form of equations of motion is

$$
\begin{gathered}
{\left[\left(I_{1}+m_{1} a_{1}^{2}\right)+m_{2} l_{1}^{2}\right] \ddot{\alpha}_{1}+2 m_{2} l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \sin \left(\alpha_{1}-\alpha_{2}\right)=M_{1}+M_{2},} \\
\left(I_{2}+m_{2} a_{2}^{2}\right)-2 m_{2} l_{1} a_{2} \dot{\alpha}_{1} \dot{\alpha}_{2} \sin \left(\alpha_{1}-\alpha_{2}\right)=-M_{2} .
\end{gathered}
$$

Problem 66. The angle α locates the angular position of the stationary slide 4

Fig. 101
with respect to the vertical plane $X Y$ of the inertial system of coordinates $X Y Z$ (Fig. 101). The massless link 1 is free to move along this slide and is supported by the spring 3 of stiffness k. The length of the uncompressed spring is l. The link 2 is hinged to the link 1 at the point A. The distance c locates the position of the centre of gravity G of the link 2. The link 2 possesses mass m and its moment of inertia about axis through the centre of gravity G is I.

Produce the equations of motion of the system and the expressions for the
generalized coordinates corresponding to the possible equilibrium positions of the system.

Solution. This system possesses two degrees of freedom and q_{1} and q_{2} stand for the generalized independent coordinates. In fact q_{2} is an angle of rotation of the link 2 about point A. Since the link l is massless, the total kinetic energy of the system is associated with the link 2 only. The link 2 performs plane motion, hence its kinetic energy is

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I \dot{q}_{2}^{2},
$$

where v_{G} stands for the absolute linear velocity of the centre of gravity G of the link 2 and \dot{q}_{2} is its absolute angular velocity.

The velocity v_{G} can be produced by differentiation of the following absolute position vector

$$
\boldsymbol{r}_{G}=\boldsymbol{I}\left(q_{1} \cos \alpha+a \sin \alpha+c \cos q_{2}\right)+\boldsymbol{J}\left(q_{1} \sin \alpha-a \cos \alpha+c \sin q_{2}\right) .
$$

Hence, the wanted velocity is

$$
\boldsymbol{v}_{G}=\dot{\boldsymbol{r}}_{G}=\boldsymbol{I}\left(\dot{q}_{1} \cos \alpha-c \dot{q}_{2} \sin q_{2}\right)+\boldsymbol{J}\left(\dot{q}_{1} \sin \alpha+c \dot{q}_{2} \cos q_{2}\right) .
$$

Then

$$
v_{G}^{2}=\left(\dot{q}_{1} \cos \alpha-c \dot{q}_{2} \sin q_{2}\right)^{2}+\left(\dot{q}_{1} \sin \alpha+c \dot{q}_{2} \sin q_{2}\right)^{2} .
$$

Introduction of these expressions yields the wanted kinetic energy function

$$
\begin{gathered}
T=\frac{1}{2} m\left(\left(\dot{q}_{1} \cos \alpha-c \dot{q}_{2} \sin q_{2}\right)^{2}+\left(\dot{q}_{1} \sin \alpha+c \dot{q}_{2} \cos q_{2}\right)^{2}\right)+\frac{1}{2} I \dot{q}_{2}^{2}= \\
\frac{1}{2} m \dot{q}_{1}^{2}+m c \dot{q}_{1} \dot{q}_{2} \sin \left(\alpha-q_{2}\right)+\frac{1}{2} m c^{2} \dot{q}_{2}^{2}+\frac{1}{2} I \dot{q}_{2}^{2} .
\end{gathered}
$$

The elemental work of the force of weight and elastic force of the spring is

$$
\delta A=m g \cos \alpha \delta q_{1}-k q_{1} \delta q_{1}-m g c \sin q_{2} \delta q_{2} .
$$

Therefore, the generalized forces are

$$
Q_{1}=m g \cos \alpha-k q_{1}, Q_{2}=-m g c \sin q_{2} .
$$

Since the system is of two degrees of freedom and the generalized coordinates are q_{1} and q_{2}, one can obtain the following Lagrange's equations:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{1}}\right)-\frac{\partial T}{\partial q_{1}}=Q_{1}, \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{2}}\right)-\frac{\partial T}{\partial q_{2}}=Q_{2} .
$$

Taking into account the formulas obtained above, we have the equations of motion

$$
\begin{gathered}
m \ddot{q}_{1}+m c \sin \left(\alpha-q_{2}\right) \ddot{q}_{2}-m c \cos \left(\alpha-q_{2}\right) \dot{q}_{2}^{2}-m g \cos \alpha+k q_{1}=0, \\
\left(I+m c^{2}\right) \ddot{q}_{2}+m c \sin \left(\alpha-q_{2}\right) \ddot{q}_{1}+m g c \sin q_{2}=0 .
\end{gathered}
$$

The above set of equations allows the equilibrium position of the system to be determined. If q_{1} and q_{2} are constant,

$$
\begin{gathered}
m g \cos \alpha-k q_{1}=0, \\
m g c \sin q_{2}=0 .
\end{gathered}
$$

Hence, $q_{1}=\frac{m g \cos \alpha}{k}, q_{2}=0$.
Problem 67. The circular slide of radius R is free to rotate about the horizontal axis Y of the inertial system of coordinates $X Y Z$ (Fig. 102). Its moment of inertia about that axis is I. The body 2 , which can be considered as a particle of mass m, can move along the slide without friction. System of coordinates $x y z$, shown in Fig. 102, is rigidly attached to the slide 1 .

By means of Lagrange equations derive the differential equations of motion of

 the system along the generalized coordinates α and β.

Solution. The system considered has 2 degrees of freedom and the angles α and β may be considered as the generalized coordinates. Hence, Lagrange's equations for this case can be adopted in the following form:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\alpha}}\right)-\left(\frac{\partial T}{\partial \alpha}\right)=Q_{\alpha} \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\beta}}\right)-\left(\frac{\partial T}{\partial \beta}\right)=Q_{\beta} .
\end{aligned}
$$

The kinetic energy T is a sum of kinetic energy of the body (particle)
Fig. 102
and kinetic energy of the slide $T=T_{1}+T_{2}$, where T_{1} is a kinetic energy of the particle and T_{2} is a kinetic energy of the slide.
$T_{1}=\frac{m v^{2}}{2}$, where v is an absolute velocity of a particle. Then $\boldsymbol{v}_{\boldsymbol{a}}=\boldsymbol{v}_{r}+\boldsymbol{v}_{t r}$, where \boldsymbol{v}_{r} is a reletive velocity and $\boldsymbol{v}_{t r}$ is a transport velocity of the particle.

Relative motion is a motion of the particle along the slide. Hence, $v_{r}=R \dot{\beta}$. Transport motion is a motion of the slide. Therefore, $v_{t r}=R \dot{\alpha} \sin \beta$. But $\boldsymbol{v}_{r} \perp \boldsymbol{v}_{t r}$, so $v_{a}^{2}=R^{2}\left(\dot{\alpha}^{2} \sin ^{2} \beta+\dot{\beta}^{2}\right)$ and $T_{1}=\frac{m R^{2}\left(\dot{\alpha}^{2} \sin ^{2} \beta+\dot{\beta}^{2}\right)}{2}$.

Slide is in rotational motion, then $T_{2}=\frac{I \dot{\alpha}^{2}}{2}$.
The total kinetic energy is

$$
T=\frac{m R^{2}\left(\dot{\alpha}^{2} \sin ^{2} \beta+\dot{\beta}^{2}\right)}{2}+\frac{I \dot{\alpha}^{2}}{2} .
$$

By derivation one can obtain

$$
\frac{\partial T}{\partial \dot{\alpha}}=I \dot{\alpha}+m R^{2} \dot{\alpha} \sin ^{2} \beta, \frac{\partial T}{\partial \dot{\beta}}=m R^{2} \dot{\beta}, \frac{\partial T}{\partial \alpha}=0, \frac{\partial T}{\partial \beta}=m R^{2} \dot{\alpha}^{2} \sin \beta \cos \beta
$$

Now determine the generalized forces. Considering elemental work done by a gravity force in virtual displacement $\delta \alpha$, we have

$$
\delta A_{\alpha}=m g R \sin \alpha \sin \beta \delta \alpha
$$

The elemental work done by a gravity force in virtual displacement $\delta \beta$ is

$$
\delta A_{\beta}=-m g R \cos \alpha \cos \beta \delta \beta
$$

Thus, $Q_{\alpha}=m g R \sin \alpha \sin \beta$ and $Q_{\beta}=-m g R \cos \alpha \cos \beta$.
Finally we have the differential equations of motion of the system

$$
\begin{gathered}
\left(I+m R^{2} \sin ^{2} \beta\right) \ddot{\alpha}+2 m R^{2} \dot{\alpha} \dot{\beta} \sin \beta \cos \beta-m g R \sin \alpha \sin \beta=0 \\
m R^{2} \ddot{\beta}-m R^{2} \dot{\alpha}^{2} \sin \beta \cos \beta+m g R \cos \alpha \cos \beta=0
\end{gathered}
$$

8. PROBLEMS FOR SELF-STUDY TRAINING

8.1. Integration of Differential Equations of the Particle Motion under the Action of Constant Forces

A body moves from the point A along a plane $A B$ of length l during τs. (Fig. 103). Its initial velocity is v_{A}. Coefficient of sliding friction is f. At the point B the body leaves a plane with a velocity v_{B} and then falls with a velocity v_{C} at a point C moving in the air $T s$.

Determine specified quantities. Consider the body as a material particle neglecting the resistance of the air.

Variants 1-5 (Fig. 103 , scheme 1).
Variant 1. Given are: $\alpha=30^{\circ} ; v_{A}=0 ; f=0,2 ; l=10 m ; \beta=$ 60°. Determine τ and h.

Variant 2. Given are: $\alpha=15^{\circ} ; v_{A}=2 \mathrm{~m} / \mathrm{s} ; f=0,2 ; h=4 \mathrm{~m} ; \beta=$ 45°. Determine l and equation of the path along $B C$.

Variant 3. Given are: $\alpha=30^{\circ} ; v_{A}=2,5 \mathrm{~m} / \mathrm{s} ; f \neq 0 ; l=8 \mathrm{~m} ; d=$ $10 \mathrm{~m} ; \beta=60^{\circ}$. Determine v_{B} and τ.

Variant 4. Given are: $v_{A}=0 ; \tau=2 \mathrm{~s} ; l=9,8 \mathrm{~m} ; \beta=60^{\circ} ; f=0$. Determine α and T.

Variant 5. Given are: $\alpha=30^{\circ} ; v_{A}=0 ; l=9,8 \mathrm{~m} ; \tau=3 \mathrm{~s} ; \beta=45^{\circ}$. Determine f and v_{C}.

Variants 6-10 (Fig. 103, scheme 2).
Variant 6. Given are: $\alpha=20^{\circ} ; f=0,1 ; \tau=0,2 s ; h=40 \mathrm{~m} ; \beta=30^{\circ}$. Determine l and v_{C}.

Variant 7. Given are: $\alpha=15^{\circ} ; f=0,1 ; v_{A}=16 \mathrm{~m} / \mathrm{s} ; l=5 \mathrm{~m} ; \beta=45^{\circ}$. Determine v_{B} and T.

Variant 8. Given are: $v_{A}=21 \mathrm{~m} / \mathrm{s} ; f=0 ; \tau=0,3 \mathrm{~s} ; v_{B}=20 \mathrm{~m} / \mathrm{c} ; \beta=60^{\circ}$. Determine α and d.

Variant 9. Given are: $\alpha=15^{\circ} ; \tau=0,3 s ; f=0,1 ; h=30 \sqrt{2} m ; \beta=45^{\circ}$. Determine v_{B} and v_{A}.

Variant 10. Given are: $\alpha=15^{\circ} ; f=0 ; v_{A}=12 \mathrm{~m} / \mathrm{s} ; d=50 \mathrm{~m} ; \beta=60^{\circ}$. Determine τ and equation of the path along $B C$.

Variants 11 - 15 (Fig. 103, scheme $3, f=0, M$ is a mass of a body).
Variant 11, Given are: $\alpha=30^{\circ} ; P \neq 0 ; l=40 m ; v_{A}=0 ; v_{B}=4,5 \mathrm{~m} /$ $s ; d=3 \mathrm{~m}$. Determine τ and h.

Variant 12. Given are: $\alpha=30^{\circ} ; P=0 ; l=40 \mathrm{~m} ; v_{B}=4,5 \mathrm{~m} / \mathrm{s} ; h=1,5 \mathrm{~m}$. Determine v_{A} and d.

Variant 13. Given are: $\alpha=30^{\circ} ; M=400 \mathrm{~kg} ; v_{A}=0 ; \tau=20 \mathrm{~s} ; d=$
$3 \mathrm{~m} ; h=1,5 \mathrm{~m}$. Determine P and l.
Variant 14. Given are: $\alpha=30^{\circ} ; M=400 \mathrm{~kg} ; P=2,2 \mathrm{kN} ; v_{A}=0 ; l=$ $40 \mathrm{~m} ; d=5 \mathrm{~m}$. Determine v_{B} and v_{C}.

Variant 15. Given are: $\alpha=30^{\circ} ; v_{A}=0 ; P=2 k N ; l=50 \mathrm{~m} ; h=2 \mathrm{~m} ; d=$ 4 m . Determine T and M.

Variants 16-20 (Fig. 103, scheme 4).

Variant 16. Given are: $\alpha=30^{\circ} ; v_{A}=1 \mathrm{~m} / \mathrm{s} ; l=3 \mathrm{~m} ; f=0,2 ; d=2,5 \mathrm{~m}$. Determine h and T.

Variant 17. Given are: $\alpha=45^{\circ} ; l=6 m ; v_{B}=2 v_{A} ; \tau=1 s ; h=6 m$. Determine d and f.

Variant 18. Given are: $\alpha=30^{\circ} ; l=2 m ; v_{A}=0 ; f=0,1 ; d=3 m$. Determine h and τ.

Variant 19. Given are: $\alpha=15^{\circ} ; l=3 \mathrm{~m} ; v_{B}=3 \mathrm{~m} / \mathrm{s} ; f \neq 0 ; \tau=1,5 \mathrm{~s} ; d=$ 2 m . Determine v_{A} and h.

Variant 20. Given are: $\alpha=45^{\circ} ; v_{A}=0 ; f=0,3 ; d=2 m ; h=4 m$. Determine l and τ.

Variants 21-25 (Fig. 103, scheme 5).
Variant 21. Given are: $\alpha=30^{\circ} ; f=0,1 ; v_{A}=1 \mathrm{~m} / \mathrm{s} ; \tau=1,5 \mathrm{~s} ; h=10 \mathrm{~m}$. Determine v_{B} and d.

Variant 22. Given are: $v_{A}=0 ; \alpha=45^{\circ} ; l=10 m ; \tau=2 s$. Determine f and equation of the path along $B C$.

Variant 23. Given are: $f=0 ; v_{A}=0 ; l=9,81 m ; \tau=2 s ; h=20 m$. Determine α and T.

Variant 24. Given are: $v_{A}=0 ; \alpha=30^{\circ} ; f=0,2 ; l=10 \mathrm{~m} ; d=12 \mathrm{~m}$. Determine τ and h.

Variant 25. Given are: $v_{A}=0 ; \alpha=30^{\circ} ; f=0,2 ; l=6 \mathrm{~m} ; h=4,5 \mathrm{~m}$. Determine τ and v_{C}.

Variants 26-30 (Fig. 103, scheme 6).
Variant 26. Given are: $v_{A}=7 \mathrm{~m} / \mathrm{s} ; f=0,2 ; l=8 \mathrm{~m} ; h=20 \mathrm{~m}$. Determine d and v_{C}.

Variant 27. Given are: $v_{A}=4 \mathrm{~m} / \mathrm{s} ; f=0,1 ; \tau=2 \mathrm{~s} ; d=2 \mathrm{~m}$. Determine v_{B} and h.

Variant 28. Given are: $v_{B}=3 \mathrm{~m} / \mathrm{s} ; f=0,3 ; l=3 \mathrm{~m} ; h=5 \mathrm{~m}$. Determine v_{A} and T.

Variant 29. Given are: $v_{A}=3 \mathrm{~m} / \mathrm{s} ; v_{B}=1 \mathrm{~m} / \mathrm{s} ; l=2,5 \mathrm{~m} ; h=20 \mathrm{~m}$. Determine f and d.

Variant 30. Given are: $f=0,25 ; l=4 m ; d=3 m ; h=5 m$. Determine v_{A} and τ.

Fig. 103

Example

In order to protect ditches from the slide-rocks there is a ledge $D C$ in the railway rocky cuttings. Taking into account the possibility of the motion of a stone from the highest point A and assuming its initial velocity to be $v_{0}=0$, determine the minimal width of the ledge b and falling velocity v_{C}. The stone moves along a slope $A B$ of length l during τs. The angle α is given. Coefficient of sliding friction f is constant. Neglect the resistance of the air.

Given are: $\quad v_{A}=0 ; \alpha=60^{\circ} ; l=$ $4 m ; \tau=1 s ; f \neq 0 ; h=5 m ; \beta=75^{\circ}$. Determine b and $v_{C}=0$.

Solution. Consider the motion of a stone along $A B$. Assuming the stone as a material

Fig. 104 particle, show all acting forces: weight \boldsymbol{G}, normal reaction \boldsymbol{N} and a force of sliding friction \boldsymbol{F}. Work out deferential equation of motion of the stone on section $A B$ (Fig. 104):

$$
m \ddot{x_{1}}=\sum X_{i 1} ; \quad m \ddot{x_{1}}=G \sin \alpha-F .
$$

The force of friction is

$$
F=f N,
$$

where $N=G \cos \alpha$.
Therefore,

$$
m \ddot{x}_{1}=G \sin \alpha-f G \cos \alpha \text { or } \ddot{x}_{1}=g \sin \alpha-f g \cos \alpha .
$$

Integrating this deferential equation twice, we obtain

$$
\begin{gathered}
\dot{x_{1}}=g(\sin \alpha-f \cos \alpha) t+C_{1} \\
x_{1}=\left[\frac{g(\sin \alpha-f \cos \alpha)}{2}\right] t^{2}+C_{1} t+C_{2}
\end{gathered}
$$

In order to determine constants of integration, make use of initial conditions: at $t=0, x_{10}=0$ and $x_{10}=0^{*}$.

Compose equations by integrating, for $t=0$:

$$
x_{10}=C_{1} ; \quad x_{10}=C_{2} .
$$

Determine constants:

$$
C_{1}=0, \quad C_{2}=0 .
$$

Then

$$
\dot{x}_{1}=g(\sin \alpha-f \cos \alpha) t ; \quad x_{1}=\left[\frac{g(\sin \alpha-f \cos \alpha)}{2}\right] t^{2} .
$$

For instant τ, when the stone leaves rectilinear section,

$$
\dot{x_{1}}=v_{B} ; \quad x_{1}=l,
$$

i.e.,

$$
v_{B}=g(\sin \alpha-f \cos \alpha) \tau ;
$$

$$
l=\left[\frac{g(\sin \alpha-f \cos \alpha)}{2}\right] \tau^{2}
$$

whence

$$
v_{B}=\frac{2 l}{\tau},
$$

i.e.,

$$
v_{B}=\frac{2 \cdot 4}{1}=8 \mathrm{~m} / \mathrm{s} .
$$

Consider the motion of a stone on curvilinear section $B C$. There is only a force of weight \boldsymbol{G} acting on a stone here. Derive deferential equations of its motion:

$$
m \ddot{x}=0 ; \quad m \ddot{y}=G .
$$

Initial conditions of the problem: at $t=0$,

$$
\begin{aligned}
x_{0}=0 ; & y_{0}=0 \\
\dot{x_{0}}=v_{B} \cos \alpha ; & \dot{y}_{0}=v_{B} \sin \alpha .
\end{aligned}
$$

Integrating these deferential equations twice, we obtain

$$
\begin{gathered}
\dot{x}=\mathrm{C}_{3} ; \quad \dot{y}=g t+C_{4} \\
x=C_{3} t+C_{5} ; \quad y=g t^{2} / 2+C_{4} t+C_{6}
\end{gathered}
$$

Write these equations for $t=0$:

$$
\begin{aligned}
& \dot{x_{0}}=C_{3} ; \dot{y_{0}}=C_{4} \\
& x_{0}=C_{5} ; \quad y_{0}=C_{6}
\end{aligned}
$$

Whence,

$$
\begin{array}{cl}
C_{3}=v_{B} \cos \alpha ; & C_{4}=v_{B} \sin \alpha ; \\
C_{5}=0 ; & C_{6}=0 .
\end{array}
$$

Equations for the projections of velocity of a stone are

$$
\dot{x}=v_{B} \cos \alpha ; \quad \dot{y}=g t+v_{B} \sin \alpha
$$

and equations of its motion have the following form:

$$
x=v_{B} t \cos \alpha ; \quad y=g t^{2} / 2+v_{B} t \sin \alpha
$$

By excluding parameter t from equations of motion one can derive equation of the path of the stone. Determine t from the first equation and then substitute its value into the second one. We have

$$
y=g x^{2} /\left(2 v_{B}^{2} \cos ^{2} \alpha\right)+x \operatorname{tg} \alpha
$$

At point $C, y=h=5 m, x=d$.
Determining d from equation of the path we have

$$
d_{1}=2,11 m, \quad d_{2}=-7,75 m
$$

Since equation of the path is a branch of parabola with positive abscissas of its points, then $d=2,11 \mathrm{~m}$. The minimal width $C D$ is

$$
b=d-E D=d-h / \operatorname{tg} 75^{\circ}, \text { or } b=0,77 \mathrm{~m}
$$

By making use of equation of motion $x=v_{B} t \cos \alpha$, we determine the time T of motion of the stone from the point B to the point C :

$$
T=0,53 s
$$

Velocity of the stone at the point C may be determined by calculating their projections on coordinate axes

$$
\dot{x}=v_{B} \cos \alpha ; \quad \dot{y}=g t+v_{B} \sin \alpha .
$$

Finally we have

$$
v=\sqrt{\dot{x}^{2}+\dot{y}^{2}} .
$$

For instant, when the stone is at the point C, we have $t=T=0,53 \mathrm{~s}$ and

$$
v_{C}=\sqrt{\left(v_{B} \cos \alpha\right)^{2}+\left(g T+v_{B} \sin \alpha\right)^{2}}, \text { or } v_{C}=12,8 \mathrm{~m} / \mathrm{s}
$$

* The constants of integration $C_{1}-C_{6}$ can be determined by considering initial conditions for the first and the second sections of the motion. Nevertheless, sometimes it is easier to use boundary conditions for different instants.

8.2. Application of the Theorem of the Change in Kinetic Energy to Study of the Motion of a System

Mechanical system starts moving from the state of rest under the action of the forces of weight; initial state of the system is shown in Figs. 106-108. Determine acceleration of a body 1 and its velocity when it has travelled a distance s. Take into account a force of sliding friction (variants $1-3,5,6,8-12,17-23,28-30$) and the rolling friction of a body 3 (variants 2, 4, 6-9, 11, 13-15, 20, 21, 24, 27, 29). Neglect other forces of resistance and masses of the strings. Assume the strings as inextensible. Make use of the following designations: $m_{1}, m_{2}, m_{3}, m_{4}$ are the masses of the bodies $1,2,3,4 ; R_{2}, r_{2}, R_{3}, r_{3}$ - radii of respective circumferences; i_{2}, i_{3} radii of gyration of the bodies 2 and 3 with respect to axes perpendicular to the plane of figure trough their centers of gravity; $\alpha, \beta-$ angles of inclination of planes to horizon; f-coefficient of sliding friction; δ - coefficient of rolling friction.

The necessary data are represented in tab.1. Assume pulleys and blocks for which the radii of gyration are not given as homogeneous disks. Inclined strings are parallel to respective inclined planes.

Example. Given are: m_{1} is a mass of the weight $1, m_{2}=2 m_{1}, m_{3}=$ $m_{1}, m_{4}=0,5 m_{1}, m_{5}=20 m_{1}, R_{2}=R_{3}=12 \mathrm{~cm}, r_{2}=0,5 R_{2}, r_{3}=$ $0,75 R_{3}, R_{5}=20 \mathrm{~cm}, A B=l=4 R_{3}, i_{2}=8 \mathrm{~cm}, i_{3}=10 \mathrm{~cm}, \alpha=30^{\circ}, f=$ $0,1, \delta=0,2 \mathrm{~cm}, s=0,06 \pi \mathrm{~m}$.

Neglect rolling friction of a body 2 , masses of the link $B C_{5}$ and the slide B.
Connecting rod 4 is a thin homogeneous rod. Roller 5 is a homogeneous solid cylinder. Initial state of a system is shown in Fig. 105a.

Determine v_{1}-velocity of the weight in a final position and its acceleration.
Solution. Apply the theorem of the change in kinetic energy of a system:

$$
T-T_{0}=\sum A_{i}^{E}+\sum A_{i}^{J},
$$

Fig. 105
where T and T_{0} are kinetic energy of a system in a final and initial position; $\sum A_{i}^{E}$ is a sum of the work done by all the external forces acting on the system during its displacement from initial to final position; $\sum A_{i}^{J}$ is a sum of the work done by all the internal forces in that displacement.

For systems in question which consist of solids connected by inextensible thread and rods

$$
\sum A_{i}^{J}=0 .
$$

Since the system in initial position is in a state of rest, $T_{0}=0$.

Hence, we have $T=\sum A_{i}^{E}$.
In order to define kinetic energy T and the sum of the work done by all the external forces, depict the system in a final position (Fig. 105b,c).

Write down relations between velocities and displacements of the points of a system. Express all velocities and displacements through velocity and displacement of the weight l.

Velocity of the center of mass of the roller 2 equals velocity of the weight $1: v_{C 2}=v_{1}$.

The instantaneous center of zero velocity of the roller 2 is located at point P_{2}. Its angular velocity is

$$
\omega_{2}=\frac{v_{C 2}}{C_{2} P_{2}} \text { or } \omega_{2}=\frac{v_{1}}{R_{2}} .
$$

Velocity of the point D is

$$
\begin{gathered}
v_{D}=\omega_{2} D P_{2}, \text { i.e, }, \\
v_{D}=\frac{v_{1}\left(R_{2}+r_{2}\right)}{R_{2}} .
\end{gathered}
$$

It is obvious that $v_{E}=v_{D}$. But $v_{E}=\omega_{3} r_{3}$, hence,

$$
\omega_{3} r_{3}=\frac{v_{1}}{R_{2}}\left(R_{2}+r_{2}\right)
$$

Since $R_{2}=2 r_{2}$, then

$$
\omega_{3} r_{3}=\frac{3}{2} v_{1}
$$

whence $\omega_{3}=\frac{3}{2} \frac{v_{1}}{r_{3}}$.
Taking into account that

$$
\omega_{3}=\frac{d \varphi_{3}}{d t}, v_{1}=\frac{d s}{d t^{\prime}}
$$

we have

$$
\frac{d \varphi_{3}}{d t}=\frac{3}{2 r_{3}} \frac{d s}{d t}, \text { or } d \varphi_{3}=\frac{3}{2 r_{3}} d s
$$

By integrating one can obtain

$$
\varphi_{3}=\frac{3}{2} \frac{s}{r_{3}} .
$$

When the weight l travels a distance $s=0,06 \pi m$, the pulley 3 turns trough the angle φ_{3} :

$$
\varphi_{3}=\frac{3}{2} \frac{s}{r_{3}}=\frac{3}{2} \frac{0,06 \pi}{0,09}=\pi .
$$

At this angle of rotation of the pulley 3 on 180° its point A_{0} moves to the final location A, and connecting rod 4 moves from initial location $A_{0} B_{0}$ to the final location $A B$.

The roller 5 moves to the left at the angle of rotation of the pulley 3 equal to $\frac{\pi}{2}$, and it moves to the right at the angle of rotation equal to π. Hence, the final location of the roller 5 coincides with its initial location.

Thus, the final location of all the parts of a system is defined completely (Fig. 105b).

Determine kinetic energy of a system in the final position as a sum of kinetic energy of the bodies $1,2,3,4,5$:

$$
T=T_{1}+T_{2}+T_{3}+T_{4}+T_{5}
$$

Kinetic energy of the load 1 , which is in translational motion, is

$$
T_{1}=\frac{m_{1} v_{1}^{2}}{2}
$$

Kinetic energy of the roller 2, which is in a plane motion, is

$$
T_{2}=\frac{m_{2} v_{C 2}^{2}}{2}+\frac{J_{2 \xi} \omega_{2}^{2}}{2}
$$

where $J_{2 \xi}$ is a moment of inertia of the roller 2 with respect to its longitudinal central axis $C_{2 \xi}$:

$$
J_{2 \xi}=m_{2} i_{2}^{2} .
$$

Then we find

$$
T_{2}=\frac{m_{2} v_{1}^{2}}{2}+\frac{m_{2} i_{2}^{2}}{2 R_{2}^{2}} v_{1}^{2}=\frac{1}{2} m_{2}\left(1+\frac{i_{2}^{2}}{R_{2}^{2}}\right) v_{1}^{2}
$$

Kinetic energy of the body 3, which rotates around the axis $O x$, is

$$
T_{3}=\frac{1}{2} J_{3 x} \omega_{3}^{2}
$$

where $J_{3 x}$ is a moment of inertia of the block 3 with respect to the axis $O x$:

$$
J_{3 x}=m_{3} i_{3}^{2}
$$

Then for the body 3 we obtain

$$
T_{3}=\frac{m_{3} i_{3}^{2}}{2}\left(\frac{3}{2} \frac{v_{1}}{r_{3}}\right)^{2}=\frac{9}{8} m_{3} \frac{i_{3}^{2}}{r_{3}^{2}} v_{1}^{2}
$$

Kinetic energy of the connecting rod 4 , which is in a plane motion, is

$$
T_{4}=\frac{m_{4} v_{C 4}^{2}}{2}+\frac{J_{4 \xi} \omega_{4}^{2}}{2}
$$

where $v_{C 4}$ is a velocity of the center of mass of the connecting rod $4 ; J_{4 \xi}$ is its moment of inertia with respect to the central axis $C_{4 \xi}$.

In order to determine $v_{C 4}$ and ω_{4}, find location of the instantaneous center of zero velocity of the connecting rod 4 . Since points A and B at this instant are parallel, the instantaneous center of zero velocity of the connecting rod 4 lies in infinity. Hence, its angular velocity at the given instant is $\omega_{4}=0$, and velocities of all the points are parallel and equal. Thus, kinetic energy of the connecting rod 4 is

$$
T_{4}=\frac{m_{4} v_{C 4}^{2}}{2}
$$

where $v_{C 4}=v_{A}$.
Linear velocity of the point A of the body 3 is

$$
v_{A}=\omega_{3} R_{3}, \text { or } v_{A}=\frac{3}{2} R_{3} v_{1} / r_{3}
$$

Since $r_{3}=3 / 4 R_{3}$, we have $v_{A}=2 v_{1}$.
But $v_{C 4}=v_{A}, \quad v_{C 4}=2 v_{1}$.
So, the expression for kinetic energy of the connecting rod 4 has the following form:

$$
T_{4}=\frac{1}{2} m_{4}\left(2 v_{1}\right)^{2}=2 m_{4} v_{1}^{2}
$$

Kinetic energy of the roller 5 , which is in a plane motion, is

$$
T_{5}=\frac{m_{5} v_{C 5}^{2}}{2}+\frac{J_{5 \xi} \omega_{5}^{2}}{2}
$$

where $v_{C 5}$ is a velocity of the center of mass C_{5} of the roller $5 ; J_{5 \xi}-$ its moment of inertia (as a homogeneous solid cylinder) with respect to its longitudinal central axis $C_{5 \xi}, J_{5 \xi}=\frac{m_{5} R_{5}^{2}}{2} ; \omega_{5}$ - its angular velocity.

Since the roller moves without slipping, its instantaneous center of zero velocity is at point P_{5}. Then

$$
\omega_{5}=\frac{v_{C 5}}{R_{5}}
$$

Hence,

$$
T_{5}=\frac{m_{5} v_{C 5}^{2}}{2}+\frac{m_{5} R_{5}^{2} v_{C 5}^{2}}{2 \cdot 2 R_{5}^{2}}=\frac{3}{4} m_{5} v_{C 5}^{2}
$$

As far as the link $B C_{5}$ is in a plane motion, $v_{C 5}=v_{B}$. But $v_{B}=v_{C 4}=2 v_{1}$, then $v_{C 5}=2 v_{1}$.

Therefore, kinetic energy of the roller 5 is

$$
T_{5}=\frac{3}{4} m_{5}\left(2 v_{1}\right)^{2}=3 m_{5} v_{1}^{2} .
$$

The total kinetic energy of the system will be

$$
T=\frac{m_{1} v_{1}^{2}}{2}+m_{2}\left(1+i_{2}^{2} / R_{2}^{2}\right) v_{1}^{2} / 2+\frac{9}{8} m_{3} v_{1}^{2} i_{3}^{2} / r_{3}^{2}+2 m_{4} v_{1}^{2}+3 m_{5} v_{1}^{2}
$$

Substituting values of the given masses, we obtain

$$
\begin{gathered}
T=m_{1} v_{1}^{2}\left[1+2\left(1+i_{2}^{2} / R_{2}^{2}\right)+\frac{9}{4} i_{3}^{2} / r_{3}^{2}+2+120\right] / 2, \text { or } \\
T=129 m_{1} v_{1}^{2} / 2 .
\end{gathered}
$$

Define the sum of the work done by all the external forces acting on a system in its specified displacement. Depict all the external forces (Fig. 105c).

Work done by the weight \boldsymbol{G}_{1} is

$$
A_{G_{1}}=G_{1} h_{1}=m_{1} g s \sin \alpha .
$$

Work done by frictional force $\boldsymbol{F}_{f r}$ is

$$
A_{F_{f r}}=-F_{f r p} s
$$

As far as $F_{f r}=f N_{1}=f G_{1} \cos \alpha$, then

$$
A_{F_{f r}}=-f m_{1} g s \cos \alpha .
$$

Work done by the weight \boldsymbol{G}_{2} is

$$
A_{G_{2}}=G_{2} h_{C 2}=m_{2} g s \sin \alpha .
$$

Work done by forces of traction $\boldsymbol{F}_{C 2}, \boldsymbol{F}_{C 5}$ of the rollers 2 and 5 is zero since these forces are applied at their instantaneous centers of zero velocity.

Work done by the weight \boldsymbol{G}_{4} is

$$
A_{G_{4}}=G_{4} h_{C 4},
$$

where $h_{C 4}$ is a vertical displacement of the center of gravity C_{4} of the connecting rod 4 from initial location to its final position (Fig. 105d):

$$
h_{C 4}=R_{3}, A_{G_{4}}=m_{4} g R_{3} .
$$

Work done by the rolling friction of the roller 5 is

$$
A_{M_{C}}=-M_{C} \varphi_{5},
$$

where $M_{C}=\delta N_{5}=\delta G_{5}$ is a moment of a couple of the resisting forces to rolling of the roller 5; φ_{5} is an angle of its rotation.

Since roller 5 moves without slipping, angle of its rotation is

$$
\varphi_{5}=s_{C 5} / R_{5},
$$

where $s_{C 5}$ is a displacement of the center of gravity C_{5} of the roller 5 .
In this example the work of the mentioned couple is calculated as a sum of the work done by this couple at the rotation of the body 3 on the angle $\pi / 2$ to the left and when the body 3 turns on angle $\pi / 2$ to the right once more.

The displacement of the center of gravity C_{5} of the roller 5 equals displacement of the slider B to the left and to the right:

$$
s_{C 5}=2\left(B_{0} B^{\prime}\right)
$$

Determine the displacement $B_{0} B^{\prime}$ at the rotation of body 3 on angle $\pi / 2$. Choose fixed point K of the plane as a reference (Fig. 105d). At this rotation of the body 3 the connecting rod will move from position $A_{0} B_{0}$ to position $K B^{\prime}$. Then

$$
B_{0} B^{\prime}=K B_{0}-K B^{\prime}
$$

where $K B_{0}=K O+O B_{0}=R_{3}+\sqrt{\left(A_{0} B_{0}\right)^{2}-\left(A_{0} O\right)^{2}}=R_{3}+\sqrt{l^{2}-R_{3}^{2}}$,

$$
K B^{\prime}=l=4 R_{3} .
$$

Hence,

$$
B_{0} B^{\prime}=R_{3}+\sqrt{l^{2}-R_{3}^{2}}-l=R_{3}+\sqrt{\left(4 R_{3}\right)^{2}-R_{3}^{2}}-4 R_{3}=0,88 R_{3}
$$

The total angle of rotation of the roller 5 is

$$
\varphi_{5}=1,76 R_{3} / R_{5}
$$

Then $A_{M_{C}}=-\delta m_{5} g \cdot 1,76 R_{3} / R_{5}$.
The total sum of the work done by all the external forces is
$\sum A_{i}^{E}=m_{1} g s \sin \alpha-f m_{1} g s \cos \alpha+m_{2} g s \sin \alpha+m_{4} g R_{3}-\delta m_{5} g \cdot 1,76 R_{3} / R_{5}$.
By substituting the given values of masses we obtain

$$
\sum A_{i}^{E}=m_{1} g s\left(\sin \alpha-f \cos \alpha+2 \sin \alpha+\frac{R_{3}}{2 s}-\frac{\delta \cdot 20 \cdot 1,76 R_{3}}{R_{5} s}\right)
$$

or $\sum A_{i}^{E}=1,51 m_{1} g s$.
According to the theorem of the change in kinetic energy of a system equate the values T and $\sum A_{i}^{E}$:

$$
129 \cdot \frac{m_{1} v_{1}^{2}}{2}=1,51 m_{1} g s
$$

whence

$$
v_{1}=0,21 \mathrm{~m} / \mathrm{s}
$$

In order to define acceleration of the weight, make use of the theorem in differential form:

$$
d T=\sum d A_{i}^{E}
$$

Therefore,

$$
129 \cdot \frac{m_{1}}{2} 2 v_{1} d v_{1}=1,51 m_{1} g d s
$$

whence $\frac{v_{1} d v_{1}}{d s}=\frac{1,51}{129} g$ or $a_{1}=0,115 \mathrm{~m} / \mathrm{s}^{2}$.

Fig. 106
(15)

Fig. 107

Fig. 108

Tab. 1

Variant	m_{1}	m_{2}	m_{3}	m_{4}	R_{2}	R_{3}	i_{2}	i_{3}	α	β				
$\begin{gathered} \text { (Fig.106- } \\ 108 \text {) } \\ \hline \end{gathered}$	kg				cm		cm		degree		f	cm	m	Notes
1	m	4 m	1/5m	4/3m	-	-	-	-	-	60	0,10	-	2	
2	m	1/2m	1/3m	-	-	30	-	20	30	45	0,22	0,20	2	
3	m	m	1/10m	m	-	-	-	-	45	-	0,10	-	2	
4	m	$2 m$	40 m	m	20	40	18	-	-	-	-	0,30	0,1 π	Neglect the masses of the slider B, links $A B$ and $B C$
5	m	$2 m$	m	-	20	15	18	-	60	-	0,12	-	0.28π	\qquad
6	m	$3 m$	m	-	-	28	-	-	30	45	0,10	0,28	1,5	
7	m	$2 m$	$2 m$	-	16	25	14	-	30	-	-	0,20	2	
8	m	1/2m	1/3m	-	-	30	-	-	30	45	0,15	0,20	1,75	
9	m	$2 m$	9 m	-	-	30	-	20	30	-	0,12	0,25	1,5	
10	m	1/4m	1/4m	1/5m	-	-	-	-	60	-	0,10	-	3	
11	m	1/2m	$1 / 4 \mathrm{~m}$	-	-	30	-	25	30	45	0,17	0,20	2,5	
12	m	1/2m	1/5m	m	30	-	20	-	30	-	0,20	-	2,5	
13	m	2 m	5 m	$2 m$	30	20	26	-	30	-	-	0,24	2	
14	m	1/2m	$5 m$	$4 m$	-	25	-	-	-	-	-	0,20	2	The masses of all the wheels are equal
15	m	1/2m	$4 m$	1/2m	20	15	18	-	60	-	-	0,25	1,5	

Continuation of the tab. 1

Variant number (Fig. 106108)	m_{1}	m_{2}	m_{3}	m_{4}	R_{2}	R_{3}	i_{2}	i_{3}	α	β				
	kg				cm		m		degree		f	cm	m	Notes
16	m	1/10m	1/20m	1/10m	10	12	-	-	-	-	-	-	0,05\%	Neglect the mass of the cage
17	m	1/4m	1/5m	$1 / 10 \mathrm{~m}$	20	-	15	-	60	-	0,10	-	0,16\%	Consider connecting rod 3 as a thin homogeneous rod
18	m	3 m	m	-	35	15	32	-	60	-	0,15	-	0,2 π	Neglect the mass of the cage
19	m	$1 / 3 \mathrm{~m}$	$1 / 10 \mathrm{~m}$	m	24	-	20	-	60	-	0,15	-	1,5	
20	m	$2 m$	20 m	-	20	15	16	-	30		0,10	0,20	0,2 π	Neglect the masses of the slider B, links $A B$ and $B C$
21	m	m	$2 m$	-	20	20	16	-	30	45	0,20	0,32	1,2	
22	m	1/2m	1/4m	-	20	10	-	-	60	-	0,17	-	0,1 π	Neglect the mass of the cage
23	m	m	$1 / 10 \mathrm{~m}$	4/5m	20	-	18	-	30	-	0,10	-	1	
24	m	$3 m$	20 m	-	20	30	18	-	-	-	-	0,60	0,08	Neglect the masses of the slider B, links $A B$ and $B C$
25	m	1/3m	1/4m	-	16	20	-	-	-	-	-	-	0,04 π	Neglect the mass of the cage
26	m	1/2m	m	$1 / 3 \mathrm{~m}$	30	-	20	-	-	-	-	-	0,6\%	The masses and moments of inertia of pulleys 2 and 5 are equal. Consider connecting rod 3 as a thin homogeneous rod
27	m	m	6 m	1/2m	20	20	16	-	30	-	-	0,20	2	
28	m	$2 m$	$3 m$	-	20	-	14	-	60	-	0,10	-	0,1 π	Consider connecting rod 3 as a thin homogeneous rod
29	m	1/4m	1/8m	-	-	35	-	-	15	30	0,20	0,20	2,4	
30	m	1/2m	$3 / 10 \mathrm{~m}$	$3 / 2 m$	26	20	20	18	30	-	0,12	-	2	

8.3. Application of Virtual Work Principle to the Static Problems

Mechanisms are in a state of equilibrium. Their schemas are shown in Fig. 111113. The necessary data are given in tab. 2. By making use of virtual work principle determine quantity specified in table 2. Neglect the forces of resistance. Mechanisms are located in a vertical plane for variants $3,6,10,14,16,18,19,25$ and 30 , the rest of mechanisms are in a horizontal plane.

Example. Given are: $Q=100 \mathrm{~N} ; c=5 \mathrm{~N} / \mathrm{cm} ; r_{1}=20 \mathrm{~cm} ; r_{2}=$
$40 \mathrm{~cm} ; r_{3}=10 \mathrm{~cm} ; O A=l=50 \mathrm{~cm} ; \alpha=30^{\circ} ; \beta=90^{\circ}$ (Fig. 109)
Determine deformation of the spring h in a state of equilibrium neglecting the weight of the links $O A$ and $A B$.

Solution. Mechanism is under the action of the following balanced force system: elastic force $\boldsymbol{F}, \boldsymbol{G}_{1}-$ weight of the shaft 1 with gear $2, \boldsymbol{G}_{3}$ - weight of the gear 3, \boldsymbol{G}_{4} - weight of the slider B, \boldsymbol{Q} weight of the load, and the reactions of constraints (supports) which are not shown in Fig. 109.

Make up equation of virtual work principle taking into account that all constraints are ideal (6.6):

$$
\sum \delta A_{k}^{a}=0
$$

There are following virtual displacements consistent with the constraints of mechanism in this problem: rotation of the shaft l with the gear 2 on angle $\delta \varphi_{1}$, rotation of the gear 3 on angle $\delta \varphi_{3}$ and vertical translation of the load δs_{Q}. The slider B has a virtual displacement δs_{B} (along piston rod guide), and point A has a

Fig. 109 displacement δs_{A} (δs_{A} is perpendicular to $O A$). Equation of the virtual work principle has a form:

$$
Q \delta s_{Q}-F \delta s_{B}=0
$$

Define virtual displacements relation. Since the load Q is fasten to inextensible string and there is no sliding between the string and the shaft, the displacement of the load Q equals the displacement of the points of the rim of the rod 1 . Therefore, the angle of rotation of the shaft with gear 2 is

$$
\delta \varphi_{1}=\delta s_{Q} / r_{1}
$$

The displacement of the point K is

$$
\delta s_{1}=r_{2} \delta \varphi_{1}=\left(r_{2} / r_{1}\right) \delta s_{Q}
$$

Since there is no sliding between the rods 2 and 3 , the virtual displacements of their points of contact are equal and the angle of rotation of the gear 3 is

$$
\delta \varphi_{3}=\delta s_{1} / r_{3}=\left[r_{2} /\left(r_{1} r_{3}\right)\right] \delta s_{Q}
$$

The crankshaft $O A$ is rigidly connected with the gear 3 and so

$$
\delta s_{A}=O A \delta \varphi_{3}=\left[r_{2} l /\left(r_{1} r_{3}\right)\right] \delta s_{Q}
$$

In order to determine the dependency between virtual displacements δs_{B} and δs_{A}, find the position of the instantaneous rotation center of the link $A B$, i.e., point P.

Then

$$
\delta s_{B} / \delta s_{A}=P B / P A ; \quad \delta s_{B}=(P B / P A) \delta s_{A} .
$$

From the $\triangle A P B$

$$
P B / P A=1 / \cos 30^{\circ} .
$$

Hence,

$$
\delta s_{B}=\left[r_{2} l /\left(r_{1} r_{3} \cos 30^{\circ}\right)\right] \delta s_{Q}
$$

Elastic force of the spring is proportional to its deformation: $F=c h$. Then from equation of the virtual work principle we have

$$
Q \delta s_{Q}-\operatorname{ch}\left[r_{2} l /\left(r_{1} r_{3} \cos 30^{\circ}\right)\right] \delta s_{Q}=0
$$

whence

$$
h=\frac{Q r_{1} r_{3} \cos 30^{\circ}}{c r_{2} l} ; \quad h=1,74 \mathrm{~cm} .
$$

Consequently the spring is compressed on $1,74 \mathrm{~cm}$.
Let us resolve this problem by composing equation of power which expresses virtual velocities principle:

$$
\begin{array}{r}
\sum \boldsymbol{P}_{i} \cdot \boldsymbol{v}_{i}=0 \text { or } \\
\sum P_{i} \boldsymbol{v}_{i} \cos \left(\widehat{\boldsymbol{P}_{l}, \boldsymbol{v}_{l}}\right)=0
\end{array}
$$

where \boldsymbol{P}_{i} are all the active forces applied to a system, \boldsymbol{v}_{i} are velocities of their points of application.

Give the shaft 1 with the gear 2 a virtual angular velocity ω_{1-2} around its axis of rotation, let it be clockwise (Fig.110). Then the $\operatorname{load} Q$ gets vertical velocity v_{Q}. The gear 3 with rigidly connected crankshaft $O A$ acquires angular velocity ω_{3} around O.

The link $A B$ will have angular velocity $\omega_{A B}$ which can be represented around instantaneous velocity center P. This center is located at point of intersection of perpendiculars erected to velocities \boldsymbol{v}_{A}
and \boldsymbol{v}_{B} (velocity \boldsymbol{v}_{A} belonging to the crankshaft $O A$ is perpendicular to $O A$, and velocity \boldsymbol{v}_{B} belonging to the slider is parallel to the piston rod guide).

Compose equation of virtual velocity principle:

$$
-Q v_{Q}+F v_{B}=0, \text { or }-Q v_{Q}+c h v_{B}=0 .
$$

There are three unknown quantities here: deformation of the spring h, velocities v_{Q} and v_{B}.

Velocity of the load equals velocities of the points of the rim since the string is inextensible, and so

$$
v_{Q}=\omega_{1-2} r_{1} .
$$

Velocities of the point of contact K of the gears 2 and 3 are

$$
v_{K}=\omega_{1-2} r_{2}, \quad v_{K}=\omega_{3} r_{3} .
$$

They are equal since there is no sliding between the gears.
As far as a point A belongs simultaneously to the crankshaft $O A$ and to the link $A B$, we have

$$
v_{A}=\omega_{3} \cdot O A ; \quad v_{A}=\omega_{A B} \cdot A P
$$

Velocity of the point B of the link $A B$ is

$$
v_{B}=\omega_{A B} \cdot B P .
$$

Therefore,

$$
\omega_{1-2} r_{2}=\omega_{3} r_{3} ; \quad \omega_{3} \cdot O A=\omega_{A B} \cdot A P
$$

whence

$$
\omega_{3}=\frac{\omega_{1-2} r_{2}}{r_{3}} ; \quad \omega_{A B}=\frac{\omega_{3} \cdot O A}{A P}=\frac{\omega_{1-2} r_{2} \cdot O A}{r_{3} \cdot A P} .
$$

Then

$$
v_{B}=\omega_{A B} \cdot B P=\frac{\omega_{1-2} r_{2} \cdot O A \cdot B P}{r_{3} \cdot A P} .
$$

From the $\triangle A P B$

$$
A P=B P \cdot \cos 30^{\circ} .
$$

So

$$
v_{B}=\frac{\omega_{1-2} r_{2} \cdot O A}{r_{3} \cos 30^{\circ}} .
$$

Thus, equation of the virtual velocity principle acquires the following form:

$$
-Q \omega_{1-2} r_{1}+\operatorname{ch} \frac{\omega_{1-2} r_{2} l}{r_{3} \cos 30^{\circ}}=0 .
$$

Dividing this equation by ω_{1-2}, we find deformation of the spring

$$
h=\frac{Q r_{1} r_{3} \cos 30^{\circ}}{c r_{2} l} .
$$

3	4
	8

Fig. 111

11	12
13	
15	
17	
19	20

Fig. 112

	$\longdiv { 2 2 }$
23	
27	
	30

Fig. 113

Tab. 2

	Linear dimensions	Forces, N		$E$$\vdots$$\Sigma$00000000000	$\begin{aligned} & \tilde{S}_{0}^{0} \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$			Notes
		Q	P					
1	$O A=10 \mathrm{~cm}$	-	-	20	-	-	P	
2	$O_{1} A=20 \mathrm{~cm}$	-	100	-	-	-	M	
3	$\begin{gathered} r_{1}=20 \mathrm{~cm}, r_{2}=30 \mathrm{~cm}, \\ r_{3}=40 \mathrm{~cm} \end{gathered}$	-	-	100	-	-	Q	
4	$O C: O A=4: 5$	-	200	-	-	4	c	
5	$O A=100 \mathrm{~cm}$	-	-	10	-	-	P	
6	$\begin{gathered} r_{1}=15 \mathrm{~cm}, r_{2}=50 \mathrm{~cm} \\ r_{3}=20 \mathrm{~cm}, O_{1} A=80 \mathrm{~cm} \end{gathered}$	200	-	-	-	-	P	Neglect the weight of the handle $O_{1} A$
7	$O C=O A$	-	-	-	10	3	P	Spring is compressed
8	$O C=A C$	-	200	-	10	2	Q	The same
9	$O A=20 \mathrm{~cm}$	200	-	-	-	-	M	
10	$\begin{array}{r} r_{1}=15 \mathrm{~cm}, r_{2}=40 \mathrm{~cm}, \\ r_{3}=20 \mathrm{~cm}, O A \\ =100 \mathrm{~cm} \end{array}$	$\begin{aligned} & \hline 2 \\ & \cdot 10^{3} \end{aligned}$	-	-	-	4	c	Neglect the weight of the handle $O A$
11	$O A=20 \mathrm{~cm}$	-	-	300	-	-	P	
12	$\begin{aligned} & O_{1} D=60 \mathrm{~cm}, O A \\ & =20 \mathrm{~cm} \end{aligned}$	-	-	100	-	-	P	
13	$O A=40 \mathrm{~cm}$	-	-	200	-	-	P	
14	$O B=2 \cdot O A$	20	-	-	25	3	P	Neglect the weight of $O A$ and $O B$; spring is stretched
15	$A C=O C=O D$	$\begin{array}{\|l} \hline 3 \\ \cdot 10^{3} \end{array}$	-	-	250	3	P	Spring is compressed

Continuation of the tab. 2

	Linear dimensions	Forces, N		$\begin{aligned} & \Sigma \\ & \dot{z} \\ & \Sigma \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { E } \\ & \text { I } \\ & \text { I } \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { En } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & .0 \\ & E \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Notes
		Q	P					
16	$\begin{aligned} & d_{1}=80 \mathrm{~cm}, d_{2}=25 \mathrm{~cm}, \\ & l_{1}=100 \mathrm{~cm}, l_{2}=50 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 5 \\ & \cdot 10^{3} \end{aligned}$	-	-	100	4	P	Neglect the weight of $O_{1} A$ and $O_{2} B$. Spring is compressed
17	$O A=20 \mathrm{~cm}$	-	-	200	-	-	P	
18	$\begin{aligned} & r_{1}=20 \mathrm{~cm}, \\ & r_{2}=30 \mathrm{~cm} \end{aligned}$	200	200	-	100	-	h	of the block of the radius r_{2}
19	$\begin{gathered} r_{1}=20 \mathrm{~cm} \\ r_{2}=30 \mathrm{~cm}, O A=25 \mathrm{~cm} \end{gathered}$	-	-	100	-	-	P	weight of the link $A B$
20	$O A=A B=A C=50 \mathrm{~cm}$	50	100	-	-	-	M	
21	$\begin{gathered} 0 A=A B=A C=D C= \\ =25 \mathrm{~cm} \end{gathered}$	-	200	-	-	-	M	
22	$O A=40 \mathrm{~cm}$	-	-	400	-	-	P	
23	$O C=2 O A=100 \mathrm{~cm}$	-	200	50	50	-	h	
24	$A D=O D=O B c m$	-	250	-	150	2,5	Q	Spring is compressed
25	$O D=D B=0,8 A O$	400	-	-	120	3	P	Neglect the weight of $A O$ and $B O$. Spring is stretched
26	$O A=25 \mathrm{~cm}$	-	500	120	-	2	c	Spring stretched is
27	$O B=A B$	-	-	-	180	2	P	
28	$O B=(5 / 4) O A$	-	450	-	-	-	Q	
29	$A O=30 \mathrm{~cm}, B D=O_{1} D$	-	-	120	100	-	h	
30	$\begin{aligned} & r_{1}=15 \mathrm{~cm}, r_{2}=36 \mathrm{~cm}, \\ & r_{3}=10 \mathrm{~cm}, r_{4}=20 \mathrm{~cm} \end{aligned}$	-	600	-	-	-	Q	

8.4. Application of General Equation of Dynamics to Study of Motion of Mechanical System with One Degree of Freedom

For the given mechanical system define accelerations of weights and a tension in threads to which weights are attached. Neglect mass of threads, friction of a rolling and force of resistance in bearings. The system moves from a state of rest.

Variants of mechanical systems are shown in Fig. 116-118, and the necessary data are represented in tab.3. Radii of gyration are given with respect to central axes perpendicular to the plane of figure.

Assume coefficient of friction identical both for body's sliding along the plane and for braking shoe (variants 9-12).

Assume pulleys and blocks for which the radii of gyration are not given as solid homogeneous disks.

Example. It is given: $G_{1}=G_{2}=2 G ; G_{3}=G_{4}=G ; R=2 r ; i_{2 x}=$ $r \sqrt{2} ; f=0,2$.

The block 3 is solid homogeneous cylinder (Fig. 114). Define accelerations of weights 1 and 4 and tension of branches of a thread $1-2$ and 3-4.

Solution. Let us apply to the problem solution the general equation of dynamics. As the system starts moving from a state of rest, directions of accelerations of bodies correspond to directions of their motion.

Whereas among the forces acting on bodies of system, there is a force of a friction, it is expedient to find a true direction of motion according to initial data in order to show correct direction of force of friction.

Fig. 114
If the direction of motion of system is chosen wrongly, required acceleration turns out with a sign«一». In this case it is necessary to change directions of force of friction and forces of inertia and to make corresponding corrections in the general equation of dynamics.

In the given example motion of a system is that weight 1 falls.
Let's show force system: a gravity \boldsymbol{G}_{1} - load $1, \boldsymbol{G}_{2}$ - the block $2, \boldsymbol{G}_{3}$ - the
block 3 and \boldsymbol{G}_{4} - load 4, and also \boldsymbol{F} - force of a sliding friction of load 1 on an inclined plane (Fig. 114).

Let's apply forces of inertia. Force of inertia of load 1 making translational motion with acceleration \boldsymbol{a}_{1} is expressed by a vector

$$
\boldsymbol{\Phi}_{1}=-m_{1} \boldsymbol{a}_{1} .
$$

Inertial forces of the block 2 rotating around fixed axis with angular acceleration ε_{2} are reduced to a couple. Its moment is

$$
M_{2}^{\Phi}=J_{2 x} \varepsilon_{2} .
$$

Inertial forces of the block 3 making a plane motion are reduced to a force

$$
\boldsymbol{\Phi}_{3}=-m_{3} \boldsymbol{a}_{3},
$$

where \boldsymbol{a}_{3} - acceleration of the center of mass of the block 3, and to a couple of forces, which moment is

$$
M_{3}^{\Phi}=J_{3 x} \varepsilon_{3},
$$

where ε_{3} - angular acceleration of the block.
Inertial force of a load 4 making translational motion with acceleration \boldsymbol{a}_{4} is

$$
\boldsymbol{\Phi}_{4}=-m_{4} \boldsymbol{\alpha}_{4} .
$$

Let's give the system a virtual displacement to a direction of its true motion (Fig. 114) (it is possible to give virtual displacement in the opposite direction).

Writing the general equation of dynamics, we obtain

$$
\begin{aligned}
G_{1} \delta s_{1} \sin 60^{\circ} & -F \delta s_{1}-\Phi_{1} \delta s_{1}-M_{2}^{\Phi} \delta \varphi_{2}-G_{3} \delta s_{3}-\Phi_{3} \delta s_{3}-M_{3}^{\Phi} \delta \varphi_{3}-G_{4} \delta s_{4} \\
& -\Phi_{4} \delta s_{4}=0,
\end{aligned}
$$

where $\delta \varphi_{2}$ and $\delta \varphi_{3}$ - angles of rotation of blocks 2 and 3 .
Relations between virtual displacements are the same, as for relations between corresponding velocities.

Let's express velocities of the centers of mass and angular velocities of bodies of system as a function of velocity of a body 1 .

As is shown in Fig. 114, the instantaneous center of zero velocity of the block 3 is on one vertical with the center of the block 2. Distance between the instantaneous center of zero velocity and the center of the block 3 is

$$
b=\frac{3 r}{2}-r=\frac{r}{2} .
$$

Now we find

$$
\left.\begin{array}{c}
\omega_{2}=\omega_{3}=v_{1} / R=v_{1} / 2 r ; \\
v_{3}=v_{4}=\omega_{3} b=v_{1} / 4 .
\end{array}\right\}
$$

The same dependences are between virtual displacements

$$
\left.\begin{array}{c}
\delta \varphi_{2}=\delta \varphi_{3}=\delta s_{1} /(2 r) ; \\
\delta s_{3}=\delta s_{4}=\delta s_{1} / 4 .
\end{array}\right\}
$$

General equation taking into account these formulas becomes

$$
\begin{gathered}
G_{1} \sin 60^{\circ}-F-\Phi_{1}-M_{2}^{\Phi} /(2 r)-G_{3} / 4-\Phi_{3} / 4-M_{3}^{\Phi} /(2 r)-G_{4} / 4- \\
\Phi_{4} / 4=0 .
\end{gathered}
$$

The same equation can be obtained, if to work out the equation of power, having gave system virtual velocities. The relationships resulted for the real velocities of bodies of system are the same, as for any virtual velocities.

Considering that

$$
G_{1}=G_{2}=2 G=2 m g ; \quad G_{3}=G_{4}=G=m g
$$

we have

$$
\left\{\begin{array}{c}
F=f G \cos 60^{\circ}=f m g \\
\Phi_{1}=m_{1} a_{1}=2 m a_{1} ; \\
M_{2}^{\Phi}=J_{2 x} \varepsilon_{2}=m_{2} i_{2 x}^{2} \varepsilon_{2}=4 m r^{2} \varepsilon_{2} ; \\
\Phi_{3}=m_{3} a_{3}=m a_{3} ; \\
M_{3}^{\Phi}=J_{3 x} \varepsilon_{3}=\left[m_{3}(1,5 r)^{2} / 2\right] \varepsilon_{3}=9 m r^{2} \varepsilon_{3} / 8 \\
\Phi_{4}=m_{4} a_{4}=m a_{4}
\end{array}\right.
$$

Dependences between accelerations are

$$
\left.\begin{array}{c}
\varepsilon_{2}=\varepsilon_{3}=a_{1} /(2 r) ; \\
a_{3}=a_{4}=a_{1} / 4
\end{array}\right\}
$$

Then we will obtain

$$
g \sqrt{3}-f g-2 a_{1}-a_{1}-g / 4-a_{1} / 16-9 a_{1} / 32-g / 4-a_{1} / 16=0
$$

whence

Fig. 115

$$
\begin{array}{cc}
a_{1}=\frac{g(\sqrt{3}-f-0,5)}{3,41} ; & a_{1}=2,96 \mathrm{~m} / \mathrm{sec}^{2} ; \\
a_{4}=\frac{a_{1}}{4} ; & a_{4}=0,74 \mathrm{~m} / \mathrm{sec}^{2} .
\end{array}
$$

In order to define tension in a thread $1-2$, we will mentally cut this thread and replace its action on a load 2 by reaction T_{1-2} (Fig. 115).

Then general equation of dynamics will be $G_{1} \delta s_{1} \sin 60^{\circ}-F \delta s_{1}-\Phi_{1} \delta s_{1}-T_{1-2} \delta s_{1}=0$, whence $T_{1-2}=G_{1} \sin 60^{\circ}-F-\Phi_{1}=$ $2 G \sin 60^{\circ}-2 G f \cos 60^{\circ}-2(G / g) a_{1} ; T_{1-2}=$ 0,93G.

In order to define tension in a thread 3-4, we will mentally cut this thread and replace its action on a load 4 by reaction T_{3-4} (Fig. 115).

Without making the general equation of dynamics, on the basis of D'Alembert's principle we have

$$
T_{3-4}=G_{4}+\Phi_{4}=G+(G / g) a_{4} ; \quad T_{3-4}=1.08 G
$$

Fig. 116

Fig. 117

Fig. 118

Tab. 3

	Gravity force				$\frac{R}{r}$	Radii of gyration		P		Supplementary data
	G_{1}	G_{2}	G_{3}	G_{4}		$i_{2 x}$	$i_{3 x}$			
1	G	G	$3 G$	-	2	$r \sqrt{2}$	-	-	-	
2	G	G	G	-	2	$r \sqrt{2}$	-	-	-	
3	3G	G	G	-	2	$r \sqrt{2}$	-	-	0,1	
4	G	G	$2 G$	-	-	-	-	-	0,2	$r_{2}=r_{3}$
5	$2 G$	G	G	G	3	$2 r$	-	-	-	
6	$2 G$	G	$2 G$	-	3	$2 r$	-	-	0,2	
7	$2 G$	G	$2 G$	-	3	$2 r$	-	-	0,2	
8	$2 G$	G	$2 G$	-	3	$2 r$	-	-	0,2	
9	$2 G$	G	$2 G$	-	3	$2 r$	-	0,2G	0,2	
10	$2 G$	$2 G$	G	-	4	-	$2 r$	$G / 3$	0,4	
11	$2 G$	G	$2 G$	0,2G	3	$2 r$	-	-	0,2	
12	$2 G$	G	$2 G$	0,2G	3	$2 r$	-	-	0,2	
13	$4 G$	$2 G$	G	$4 G$	-	$r_{2} \sqrt{2}$	$2 r_{3}$	-	-	$r_{2}=2 r_{3} ; R_{2}=R_{3}$
14	-	G	G	$4 G$	-	$r_{2} \sqrt{2}$	$2 r_{3}$	$8 G$	-	$r_{2}=2 r_{3} ; R_{3}=1,5 R_{2}$
15	$4 G$	G	$2 G$	$4 G$		$r_{2} \sqrt{2}$	$2 r_{3}$	-	-	$r_{2}=2 r_{3} ; R_{3}=1,5 R_{2}$
16	-	G	$2 G$	$4 G$	-	$r_{2} \sqrt{2}$	$2 r_{3}$	$4 G$	-	$r_{2}=2 r_{3} ; R_{3}=1,5 R_{2}$
17	$2 G$	G	G	-	2	$r \sqrt{2}$	-	-	0,1	
18	$3 G$	0,2G	0,1G	0,5G	2	-	-	-	0,4	
19	$4 G$	0,3G	0,2G	$3 G$	3	$2 r$	1,2r	-	0,1	$r_{3}=1,2 r ; R_{3}=1,2 r_{3}$
20	$4 G$	0,2G	0,1G	$3 G$	2	1,6r	$r \sqrt{2}$	-	0,2	$r_{2}=1,5 r ; R_{2}=1,2 r_{2}$
21	$5 G$	0,1G	0,2G	-	3	-	$r \sqrt{2}$	G	-	
22	G	0,2G	0,3G	-	2	-	$r \sqrt{2}$	G	-	
23	G	0,2G	0,1G	-	1,5	1,2r	-	$2 G$	-	$R_{3}=1,2 r$
24	$2 G$	G	G	$8 G$	-	-	-	-	-	Masses of the wheels are equal
25	6G	$2 G$	$2 G$	G	-	-	-	-	-	$r_{3}=r_{4}$
26	$6 G$	G	$2 G$	-	-	-	-	-	-	$r_{3}=r_{2}$
27	G	G	G	4G	2	$r \sqrt{2}$	$r \sqrt{2}$	-	-	
28	$3 G$	G	G	-	2	$r \sqrt{2}$	-	-	0,1	
29	$6 G$	$3 G$	G	G	2	-	$r \sqrt{2}$	-	-	$i_{4 x}=i_{3 x}$
30	8G	G	G	$2 G$	-	-	-	-	0,1	

8.5. Research of Free Vibrations of Mechanical Systems with One Degree of Freedom

Define frequency and period of small free vibrations of mechanical system with one degree of freedom neglecting forces of resistance and masses of threads.

Derive the equation of motion of a load $1, y=y(t)$, having accepted for origin position of rest of a load l (at a static elongation of springs). Determine also amplitude of vibrations of a load 1 .

Schemes of systems are shown in Fig. 120-122, and the necessary data are represented in tab. 4.

In the problem following designations are accepted: 1 is a load of mass $m_{1} ; 2$ is a block of mass m_{2} and radius r_{2} (a solid homogeneous disk); 3 is a block of mass m_{3} and gyration radius $i_{x} ; 4$ is a solid homogeneous disk of mass m_{4} and radius $r_{4} ; 5$ is a disk of mass m_{5} and gyration radius $i_{x}^{\prime} ; 6$ is a thin homogeneous rod of mass m_{6} and length $l ; 7$ is a rod, which mass is neglected; c is a spring stiffness factor; y_{0} is an initial deflection of a load l on a vertical from position of the rest corresponding to a static elongation of a spring; \dot{y}_{0} is a projection of initial speed $\boldsymbol{v}_{\mathbf{0}}$ of a load l on a vertical axis.

In Fig. 120-122 systems of bodies $1-7$ are represented in rest position (at a static elongation of springs).

In variants $5,6,14$ and 23 rod 6 is rigidly connected to a disk 4.
Example. It is given: $m_{1}=1 \mathrm{~kg} ; m_{2}=2 \mathrm{~kg} ; \quad m_{4}=1 \mathrm{~kg} ; \quad m_{6}=3 \mathrm{~kg}$; $l=0,6 \mathrm{~m} ; c=20^{\mathrm{N}} / \mathrm{cm} ; y_{0}=0,2 \mathrm{~cm} ; \dot{y}_{0}=8 \mathrm{~cm} / \mathrm{sec}$ (Fig. 119).

Define cyclic frequency k, the period T of small free vibrations of system, amplitude a and derive equation of motion of load l

Solution. We will take advantage of the Lagrange's equations for conservative systems. Having accepted for system generalized coordinate a vertical deflection y of the weight l from the rest position, which corresponds to the static deflection of a spring, we have

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{y}}\right)-\left(\frac{\partial T}{\partial y}\right)=-\frac{\partial \Pi}{\partial y}
$$

where T is a system kinetic energy; Π is a system potential energy.
Let's calculate kinetic energy T with the second order infinitesimal accuracy relatively \dot{y}, and potential energy Π define with the second order infinitesimal accuracy relatively generalized coordinate y. Determine a kinetic energy of the system as a sum of kinetic energy of bodies $1,2,6$ and 4:

$$
T=T_{1}+T_{2}+T_{6}+T_{4}
$$

Let's express velocity of the centre of mass of a body 4 and angular velocities of bodies 2,4 and 6 as a function of the generalized velocity \dot{y} :

Fig. 119

$$
v_{1}=\dot{y} ; \quad \omega_{2}=\dot{y} / r_{2} ; \quad \omega_{6}=\omega_{2}=\dot{y} / r_{2}
$$

As we consider small oscillations, then $v_{B}=v_{A}$. Disk 4 rolls without sliding, so $v_{C}=v_{B} / 2$. Hence,

$$
\begin{gathered}
v_{C}=v_{A} / 2=\omega_{6} l / 2=\omega_{2} l / 2=\dot{y} l /\left(2 r_{2}\right)=2 \dot{y} ; \\
\omega_{4}=v_{C} / r_{4}=2 \dot{y} / r_{4} .
\end{gathered}
$$

Moment of inertia of the body 4 with respect to the central axis is

$$
J_{C}=m_{4} r_{4}^{2} / 2
$$

Moments of inertia of bodies 2 and 6 with respect to rotation axis are

$$
J_{2}=m_{2} r_{2}^{2} / 2 ; \quad J_{6}=m_{6} l^{2} / 3
$$

Kinetic energy of bodies $1,2,4$ and 6 is:

$$
\begin{array}{cr}
T_{1}=\frac{m_{1} v_{1}^{2}}{2}=\frac{m_{1} \dot{y}^{2}}{2} ; & T_{2}=\frac{J_{2} \omega_{2}^{2}}{2}=\frac{m_{2} \dot{y}^{2}}{4} ; \\
T_{4}=\frac{m_{4} v_{C}^{2}}{2}+\frac{J_{C} \omega_{4}^{2}}{2}=3 m_{4} \dot{y}^{2} ; & T_{6}=\frac{J_{6} \omega_{6}^{2}}{2}=\frac{8 m_{6} \dot{y}^{2}}{3} .
\end{array}
$$

Thus, kinetic energy of a system is

$$
\begin{gathered}
T=T_{1}+T_{2}+T_{6}+T_{4}=m_{1} \dot{y}^{2} / 2+m_{2} \dot{y}^{2} / 4+8 / 3 m_{6} \dot{y}^{2}+3 m_{4} \dot{y}^{2} \\
=1 / 2\left[m_{1}+m_{2} / 2+16 / 3 m_{6}+6 m_{4}\right] \dot{y}^{2} .
\end{gathered}
$$

Let's calculate a potential energy of a system which equals work of its gravity force and work of elastic force of a spring on a displacement from a deflected location, when load has coordinate y, to zero position which is a position of rest of a system:

$$
\Pi=\Pi_{\mathrm{I}}+\Pi_{\mathrm{II}} .
$$

Potential energy corresponding to gravity forces on mentioned displacement is

$$
\Pi_{1}=-G_{1} y-G_{6} h,
$$

where h is a vertical displacement of a center of mass of rod 6 , which is computed with the second order infinitesimal accuracy relatively generalized coordinate y.

It follows from Fig. 119

$$
h=l / 2-(l / 2) \cos \varphi=(l / 2)(1-\cos \varphi) .
$$

Decomposition formula for $\cos \varphi$ is

$$
\cos \varphi=1-\varphi^{2} / 2!+\varphi^{4} / 4!-\cdots
$$

Restricting this formula by the two first members and considering that

$$
\varphi=y / r_{2}=4 y / l,
$$

we have

$$
\Pi_{I}=-G_{1} y-G_{6} \cdot 4 y^{2} / l
$$

The potential energy of the deformed spring is

$$
\Pi_{\mathrm{II}}=c\left(f_{s t}+\lambda_{K}\right)^{2} / 2-c f_{s t}^{2} / 2
$$

where $f_{s t}$ is a static deflection of a spring; λ_{K} is a displacement of a point of an attachment of a spring K corresponding to coordinate y.

As, (Fig. 119),

$$
\frac{\lambda_{K}}{y}=\frac{3 / 4 l}{1 / 4 l}
$$

i.e., $\lambda_{K}=3 y$, then

$$
\Pi_{\mathrm{II}}=\frac{c\left(f_{s t}+\lambda_{K}\right)^{2}}{2}-\frac{\mathrm{c} f_{s t}^{2}}{2}=3 f_{s t} y+\frac{9}{2} c y^{2}
$$

System potential energy is

$$
\Pi=\Pi_{\mathrm{I}}+\Pi_{\mathrm{II}}=-G_{1} y-\left(4 G_{6} / l\right) y^{2}+3 c f_{s t} y+9 / 2 c y^{2}
$$

Since in the position of rest corresponding to a static elongation of a spring

$$
(\partial \Pi / \partial y)_{y=0}=0
$$

then

$$
-G_{1}+3 c f_{\mathrm{ct}}=0
$$

This equation can be obtained also having worked out the equation of moments of forces for the state of static equilibrium of system (Fig. 119):

$$
\sum M_{i 02}=P_{0} \cdot 3 / 4 l-G_{1} r_{2}=0
$$

or

$$
c f_{s t} \cdot 3 / 4 l-G_{1} l / 4=0, \quad \text { i. e. }, 3 c f_{s t}-G_{1}=0
$$

Thus, potential energy of considered mechanical systems is

$$
\Pi=9 / 2 c y^{2}-\frac{4 G_{6}}{l} y^{2}=1 / 2\left(9 C-\frac{8 G_{6}}{l}\right) y^{2}
$$

Further,

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{y}}\right) & =\left(m_{1}+\frac{m_{2}}{2}+\frac{16}{3} m_{6}+6 m_{4}\right) \ddot{y} ; \\
\frac{\partial T}{\partial y} & =0 ; \frac{\partial \Pi}{\partial y}=\left(9 C-\frac{8 G_{6}}{l}\right) y
\end{aligned}
$$

The Lagrange's equation takes a form

$$
\left(m_{1}+\frac{m_{2}}{2}+\frac{16}{3} m_{6}+6 m_{4}\right) \ddot{y}+\left(9 C-\frac{8 G_{6}}{l}\right) y=0
$$

or

$$
\ddot{y}+\frac{9 C-8 G_{6} / l}{m_{1}+m_{2} / 2+16 m_{6} / 3+6 m_{4}} y=0 .
$$

Let's introduce designation

$$
k^{2}=\frac{9 C-8 G_{6} / l}{m_{1}+m_{2} / 2+16 m_{6} / 3+6 m_{4}}
$$

Then we shall have the following equation:

$$
\ddot{y}+k^{2} y=0 .
$$

Hence, cyclic frequency of free vibrations is

$$
k=\sqrt{\frac{9 C-8 G_{6} / l}{m_{1}+m_{2} / 2+16 m_{6} / 3+6 m_{4}}}, \quad k=27,1 \mathrm{sec}^{-1} .
$$

The period of vibrations is

$$
T=2 \pi / k=2 \cdot 3,14 / 27,1=0,23 \mathrm{sec} .
$$

Integrating the differential equation, we obtain the law of motion of a load l

$$
y=C_{1} \cos k t+C_{2} \sin k t .
$$

In order to define constants C_{1} and C_{2}, determine the equation of velocity of a load

$$
\dot{y}=-k C_{1} \sin k t+k C_{2} \cos k t .
$$

Use initial conditions of problem. From the equations $y=y(t)$ and $\dot{y}=\dot{y}(t)$ at $t=0$ we have

$$
y_{0}=C_{1} ; \dot{y}=k C_{2},
$$

whence,

$$
C_{1}=y_{0} ; C_{2}=\dot{y}_{0} / k .
$$

Hence,

$$
\begin{gathered}
y=y_{0} \cos k t+(\dot{y} / k) \sin k t, \\
y=0,2 \cos 27,1 t+0,3 \sin 27,1 t .
\end{gathered}
$$

It is possible to obtain this equation in other form if introduce constants of integration a a and β having designated

$$
C_{1}=a \sin \beta ; C_{2}=a \cos \beta .
$$

Then

$$
y=a \sin (k t+\beta),
$$

where $a=\sqrt{C_{1}^{2}+C_{2}^{2}}, \beta=\tan \left(C_{1} / C_{2}\right)$, or

$$
a=\sqrt{y_{0}^{2}+\left(\dot{y}_{0} / k\right)^{2}} ; \beta=\tan \left(k y_{0} / \dot{y}_{0}\right) .
$$

Let's calculate numerical values a and β : $a=3,6 \cdot 10^{-2} m, \beta=\tan 0,68$. As $\sin \beta>0\left(C_{1}>0\right)$, then $\beta=34^{\circ} 12^{\prime}=0,597$ radian.

Finally

$$
y=3,6 \cdot 10^{-2} \sin (27,1 t+0,597) m .
$$

Fig. 120
(11

Fig. 121

Fig. 122

Tab. 4

Variant number (Fig. 120122)	l	i_{x}	i_{x}^{\prime}	r_{4}	m_{1}	m_{2}	m_{3}, m_{4}, m_{5}	m_{6}	c	$\begin{array}{\|r} \hline \mathrm{I} \\ \mathrm{con} \\ (t \\ \hline \end{array}$	itial ditions $=0)$
	m				kg				N / cm	$\begin{aligned} & y_{0}, \\ & \mathrm{~cm} \end{aligned}$	$\begin{gathered} \dot{y}_{0} \\ m / s e c \end{gathered}$
1	0,5	-	-	-	1	2	-	3	40	0,1	5,0
2	0,5	-	-	0,2	1	2	2	3	40	0	6,0
3	0,5	$3 / 2 r$	-	-	1	-	4	3	20	0,2	7,0
4	0,6	-	-	-	1	2	3	2	36	0,2	0
5	0,6	-	-	0,15	1	-	3	3	16	0	8,0
6	0,6	-	-	0,15	1	-	1	1	40	0,3	7,0
7	-	-	-	-	1	-	2	2	40	0,4	0
8	-	-	-	-	1	3	2	-	40	0	6,0
9	0,6	-	-	-	1	2	-	3	38	0,5	5,0
10	0,6	-	-	-	1	2	-	3	32	0	6,0
11	-	-	-	-	1	2	-	3	30	0,4	7,0
12	0,5	-	-	-	1	2	-	3	20	0,2	0
13	0,3	-	-	-	1	1	1	2	32	0	8,0
14	0,4	-	-	0,1	1	-	2	3	20	0	7,0
15	0,4	$r \sqrt{3}$	-	-	1	-	2	2	20	0,1	0
16	-	-	-	-	1	2	3	-	32	0,3	6,0
17	-	-	-	-	1	2	-	2	20	0	5,0
18	-	-	-	-	1	2	1	-	40	0	6,0
19	0,2	-	-	-	1	1	-	1	32	0,1	0
20	0,5	-	-	-	1	2	-	3	20	0,4	7,0
21	-	$2 r$	-	-	1	-	2	3	32	0	8,0
22	-	-	$r \sqrt{2}$	-	1	2	4	-	40	0,1	7,0
23	0,4	-	-	0,2	1	2	2	3	40	0,3	0
24	-	-	$r \sqrt{3}$	-	1	-	3	2	40	0	6,0
25	0,3	-	-	0,1	1	2	2	1	40	0,2	5,0
26	-	$r \sqrt{2}$	-	-	1	-	2	-	40	0,3	0
27	-	-	$3 r / 2$	-	1	2	3	-	40	0	6,0
28	-	-	$r \sqrt{3}$	-	1	2	3	-	40	0,2	0
29	-	-	4r/3	-	1	2	3	-	40	0	7,0
30	-	-	$r \sqrt{2}$	-	1	2	3	-	40	0,3	7,0

8.6. Application of the Lagrange's Equations to Research of Motion of Mechanical System with Two Degrees of Freedom

The mechanical system of bodies (Fig. 127-129) moves under the action of constant forces \boldsymbol{P} and couples with the moments M or only under the gravity forces.

Make up the equations of motion of system in generalized coordinates q_{1} and q_{2} at the specified initial conditions. The necessary data are reduced in tab. 5 ; in the same place recommended generalized coordinates are specified (x and φ are generalized coordinates for absolute motion, and ξ is for relative motion).

Neglect masses of the threads. Take into consideration that the rolling of wheels occurs without a slippage. Neglect rolling friction and forces of resistance in bearings. Wheels for which in the table 5 inertia radii are not specified, consider as solid homogeneous disks. Consider cages (cranks) as thin homogeneous rods. Accept that in variants $6,9,11,20,22$ and 30 mechanism is located in a horizontal plane.

Radii of gyration of bodies 2 and 3 are defined with respect to the central axis perpendicular to the figure. Coefficient of viscosity is a quantity b in expression $\boldsymbol{R}=$ $-b \boldsymbol{v}$, where \boldsymbol{v} is a relative velocity of bodies 1 and 2

Example It is given: masses of bodies of mechanical system (Fig. 123) $m_{1}=$ $3 m ; m_{2}=8 m ; m_{3}=m_{4}=m_{6}=2 m ; m_{5}=4 m ; m_{7}=m ; \boldsymbol{P}$ is a constant force applied to a body $2 ; M$ is a constant moment applied to a block $6 ; b$ is a coefficient of proportionality in expression for force of resistance to motion of a body 5: $\boldsymbol{R}=-b \boldsymbol{v}_{5}\left(\boldsymbol{v}_{5}\right.$ is a velocity of a body 5$) ; L$ is a length of a thread $3 ; r$ is a radius of the blocks 4 and 6 . Here the thread 3 is accepted ponderable. This is a

Fig. 123 complicating in comparison with the common condition of the problem. Thread sagging is not considered.

Consider all wheels as solid homogeneous disks. Neglect sliding friction of a body 2 .

Make up the equations of motion of system in generalized coordinates $q_{1}=x_{1} ; q_{2}=x_{2}$.
Initial conditions: $q_{10}=0$ (initial distance on a vertical from the lower end of a thread 3 to its horizontal site equals l_{0}), $q_{20}=0, \dot{q}_{10}=0, \dot{q}_{20}=\dot{x}_{20}$.

In Fig. 123 system is figured in initial position.
Solution. In order to resolve problem, we will apply the Lagrange's equations

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial T}{\partial \dot{x}_{1}}-\frac{\partial T}{\partial x_{1}}=Q_{1} ; \\
& \frac{d}{d t} \frac{\partial T}{\partial \dot{x}_{2}}-\frac{\partial T}{\partial x_{2}}=Q_{2},
\end{aligned}
$$

where T is a kinetic energy of a system; Q_{1} and Q_{2} are generalized forces corresponding to generalized coordinates x_{1} and x_{2}.

For the given system $T=\sum_{i=1}^{7} T_{i}$.
Let's express velocities of the centers of mass of rigid bodies of system through
generalized velocities:

$$
\left.\begin{array}{c}
v_{1}=v_{5}=\dot{x}_{1} ; \\
v_{2}=v_{6}=\dot{x}_{2} ; \\
v_{7}^{2}=\frac{\left(\dot{x}_{1}+\dot{x}_{2}\right)^{2}}{4}+\dot{x}_{2}{ }^{2}-\left(\dot{x}_{1}+\dot{x}_{2}\right) \dot{x}_{2} \cos \alpha,
\end{array}\right\}
$$

Taking into account that $\alpha=30^{\circ}$,

$$
v_{7}^{2}=0,25\left[{\dot{x_{1}}}^{2}+(5-2 \sqrt{3}) 2 \dot{x}_{2}^{2}-2(\sqrt{3}-1) \dot{x_{1}} \dot{x_{2}}\right] .
$$

It was considered that $\left(\dot{x}_{1}+\dot{x}_{2}\right) / 2$ is a velocity of the centre of mass of a body 7 concerning a body 2, i.e., relative velocity and \dot{x}_{2} is its transport velocity (Fig. 124).

Fig. 124

Angular velocities of bodies (Fig. 123-125)

Fig. 125

$$
\left.\begin{array}{c}
\omega_{4}=\frac{\dot{x}_{1}}{r} ; \\
\omega_{6}=\omega_{7}=\frac{\dot{x}_{1}+\dot{x}_{2}}{r} .
\end{array}\right\}
$$

Moments of inertia of wheels with respect to the central axes are

$$
J_{4}=J_{6}=\frac{2 m r^{2}}{2}=m r^{2} ; J_{7}=
$$

$(m / 2)(r / 2)^{2}=m r^{2} / 8$.
Kinetic energy of bodies $1,2,4-7$ is

$$
\begin{gathered}
T_{1}=m_{1} v_{1}^{2} / 2=3 m{\dot{x_{1}}}^{2} / 2 ; T_{2}=m_{2} v_{2}^{2} / 2=4 m{\dot{x_{2}}}^{2} ; \\
T_{4}=\frac{J_{4} \omega_{4}^{2}}{2}=\frac{m \dot{x}_{1}^{2}}{2} ; T_{5}=\frac{m_{5} v_{3}^{2}}{2}=2 m{\dot{x_{1}}}^{2} ; \\
T_{6}=\frac{m_{6} v_{6}^{2}}{2}+\frac{J_{6} \omega_{6}^{2}}{2}=0,5 m\left({\dot{x_{1}}}^{2}+3{\dot{x_{2}}}^{2}+2 \dot{x}_{1} \dot{x}_{2}\right) ; \\
T_{7}=\frac{m_{7} v_{7}^{2}}{2}+\frac{J_{7} \omega_{7}^{2}}{2}=(m / 16)\left[3 \dot{x}_{1}^{2}+(11-4 \sqrt{3}) \dot{x}_{2}^{2}-2(2 \sqrt{3}-3) \dot{x}_{1} \dot{x}_{2}\right] .
\end{gathered}
$$

Taking into account that all points of a thread 3 have equal velocities $v_{3 i}=$ $v_{3}=\dot{x}_{1}$, and that $\sum m_{3 i}=m$, we have $T_{3}=m_{3} v_{3}^{2} / 2=m \dot{x}_{1}^{2}$.

Substituting all these magnitudes, one can obtain

$$
T=\left(\frac{m}{16}\right)\left[75 \dot{x}_{1}^{2}+(99-4 \sqrt{3}) \dot{x}_{2}^{2}+2(11-2 \sqrt{3}) \dot{x}_{1} \dot{x}_{2}\right] .
$$

And now let's define generalized forces Q_{1} and Q_{2} corresponding to generalized coordinates x_{1} and x_{2}. Consider virtual work of all forces on virtual displacements δx_{1} and δx_{2}.

Define virtual work of all the forces done in a virtual displacement δx_{1}. It should be born in mind that now $\delta x_{2}=0$. We have

$$
\delta A_{1}=\delta A\left(m_{1} \boldsymbol{g}\right)+\delta A(\boldsymbol{R})+\delta A(M)+\delta A\left(m_{7} \boldsymbol{g}\right)+\delta A\left(m_{3} \boldsymbol{g}\right)
$$

Calculate all of these members:

$$
\begin{aligned}
\delta A\left(m_{1} \boldsymbol{g}\right)=m_{1} g \delta x_{1}, \delta A(\boldsymbol{R}) & =-b v_{5} \delta x_{1}=-b \dot{x}_{1} \delta x_{1}, \delta A(M)=-\frac{M}{r} \delta x_{1} \\
\delta A\left(m_{7} \boldsymbol{g}\right) & =-\frac{m_{7} g}{2} \sin 30^{\circ} \delta x_{1}
\end{aligned}
$$

Let's notice that work of a gravity force $m_{7} \boldsymbol{g}$ of a thread 3 from position $a^{\prime} b^{\prime}$ to position $a b$, at which $x_{1}=0$, is equal to the work of a gravity force of a site of a thread $b b^{\prime}$ at its displacement to position $a a^{\prime}$ (Fig. 126).

Thus,

$$
\delta A\left(m_{3} \boldsymbol{g}\right)=\frac{m_{3} g}{L}\left(x_{1}+\frac{l_{0}}{2}\right) \delta x_{1}
$$

Then, taking into account the data of the problem, we receive

$$
\delta A_{1}=\left[2,75 m g-b \dot{x}_{1}-\frac{M}{r}+\frac{2 m g}{L}\left(x_{1}+\frac{l_{0}}{2}\right)\right] \delta x_{1} .
$$

Hence,

Fig. 126

$$
Q_{1}=2,75 m g-b \dot{x}_{1}-\frac{M}{r}+\frac{2 m g}{L}\left(x_{1}+\frac{l_{0}}{2}\right)
$$

Define virtual work of all the forces done in a virtual displacement δx_{2}. It should be born in mind that now $\delta x_{1}=0$. So we have

$$
\delta A_{2}=\delta A(\boldsymbol{P})+\delta A\left(m_{7} \boldsymbol{g}\right)+\delta A(M)
$$

Determine all of these members:

$$
\delta A(\boldsymbol{P})=P \delta x_{2}, \delta A\left(m_{7} \boldsymbol{g}\right)=-\frac{m_{7} g}{2} \sin 30^{\circ} \delta x_{2}, \delta A(M)=-\frac{M}{r} \delta x_{2} .
$$

Thus,

$$
\delta A_{2}=\left(P-\frac{m g}{4}-\frac{M}{r}\right) \delta x_{2}
$$

whence

$$
Q_{2}=P-\frac{m g}{4}-\frac{M}{r} .
$$

Substituting all results in the Lagrange's equations, we receive the differential equations of motion of a system:

$$
\begin{gathered}
\frac{75}{8} m \ddot{x}_{1}+\frac{11-2 \sqrt{3}}{8} m \ddot{x}_{2}=2 m g \frac{x_{1}}{L}+m g\left(2,75+\frac{2 l_{0}}{L}\right)-b \dot{x}_{1}-\frac{M}{r} \\
\frac{99-4 \sqrt{3}}{8} m \ddot{x}_{2}+\frac{11-2 \sqrt{3}}{8} m \ddot{x}_{1}=-\frac{m g}{4}+P-\frac{M}{r}
\end{gathered}
$$

Expressing \ddot{x}_{2} from the second equation and substituting in the first one, we obtain

$$
\ddot{x}_{1}+2 n \dot{x}_{1}-c x_{1}=a
$$

where

$$
n=\frac{0,0538 b}{m} ; c=\frac{0,215 g}{L} ;
$$

$$
a=g\left(0,298+0,215 l_{0} / L\right)-0,099 M /(r m)-0,0088 P / m
$$

Let's define the solution of this linear non-uniform differential equation. Its characteristic equation is

$$
z^{2}+2 n z-c=0
$$

Its equation roots are

$$
z_{1,2}=-n \pm \sqrt{n^{2}+c}
$$

Then the general solution of the differential equation has a form:

$$
x_{1}=e^{-n t}\left(C_{1} e^{\sqrt{n^{2}+c} t}+C_{2} e^{-\sqrt{n^{2}+c} t}\right)-\frac{a}{c}
$$

In order to define constants C_{1} and C_{2}, differentiate this solution
$\dot{x}_{1}=e^{-n t}\left[\left(-n+\sqrt{n^{2}+c}\right) C_{1} e^{\sqrt{n^{2}+c} t}-\left(n+\sqrt{n^{2}+c}\right) C_{2} e^{-\sqrt{n^{2}+c} t}\right]$.
Using initial conditions: at $t=0, x_{1}=0 ; \dot{x}_{1}=0$, we have

$$
\begin{gathered}
C_{1}+C_{2}-a / c=0 \\
\left(-n+\sqrt{n^{2}+c}\right) C_{1}-\left(n+\sqrt{n^{2}+c}\right) C_{2}=0
\end{gathered}
$$

whence

$$
\left.\begin{array}{rl}
C_{1} & =\frac{a}{2 c+\sqrt{n^{2}+c}}\left(n+\sqrt{n^{2}+c}\right) \\
C_{2} & =\frac{a}{2 c+\sqrt{n^{2}+c}}\left(-n+\sqrt{n^{2}+c}\right) .
\end{array}\right\}
$$

Thus, we have equation of motion of the system describing change of the first generalized coordinate. To receive the second equation of motion, we find

$$
\ddot{x}_{2}=\frac{8}{99-4 \sqrt{3}}\left(-\frac{g}{4}+\frac{P}{m}-\frac{M}{m \cdot r}\right)-\frac{11-2 \sqrt{3}}{99-4 \sqrt{3}} \ddot{x}_{1}, \text { or } \ddot{x}_{2}=k-0,0818 \ddot{x}_{1},
$$

where $k=0,0869\left[\frac{1}{m}\left(P-\frac{M}{r}\right)-\frac{g}{4}\right]$.
Integrating, we obtain

$$
\dot{x}_{2}=k t-0,0818 \dot{x}_{1}+C_{3} ; x_{2}=k t^{2} / 2-0,0818 x_{1}+C_{3} t+C_{4}
$$

Using initial conditions: at $t=0, x_{1}=0 ; x_{2}=0 ; \dot{x}_{1}=0 ; \dot{x}_{2}=\dot{x}_{20}$, we find $C_{3}=\dot{x}_{20} ; \quad C_{4}=0$.

Finally we have

$$
x_{2}=\frac{k t^{2}}{2}-0,0818\left[e^{-n t}\left(C_{1} e^{\sqrt{n^{2}+c} t}+C_{2} e^{-\sqrt{n^{2}+c} t}\right)-\frac{a}{c}\right]+\dot{x}_{20} t
$$

This is the second equation of motion of a system.

Fig. 127

Fig. 128

Fig. 129

Tab. 5

	Masses of bodies					Radii of gyration		$\begin{aligned} & Q \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { In } \end{aligned}$	$\begin{aligned} & \Sigma \\ & \text { n } \\ & 0 \\ & E \\ & \sum \end{aligned}$	Coefficients of		Generalized coordinates		Initial conditions				Supplementary data
	1	2	3	4	5	$i_{2 y}$	$i_{3 y}$			$\begin{aligned} & \text { on } \\ & 0 \\ & 0 \end{aligned}$	7 0 0 0 0 7	q_{1}	q_{2}	q_{10}	q_{20}	\dot{q}_{10}	\dot{q}_{20}	
1	$2 m$	$6 m$	m	m	-	-	-	-	-	-	-	x	ξ	0	0	0	0	
2	m	3 m	-	-	-	-	-	-	M	-	-	φ	x	0	x_{0}	0	0	Neglect mass of the belt
3	m	3 m	$2 m$	-	-	$r \sqrt{2}$	-	-	M	-	-	φ	x	0	0	0	0	Moment M is applied at cage
4	m	$4 m$	-	-	-	-	-	-	-	0	b	x	ξ	0	0	\dot{x}_{0}	0	Body 1 is a particle
5	m	$2 m$	$4 m$	$2 m$	2 m	-	-	-	-	f	-	x_{1}	x_{2}	0	0	0	0	Pulleys 5 and 6 are freely shafted on a common axle, their masses being equal
6	m	$2 m$	$3 m$	-	-	$2 r$	-	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	0	0	Moment M_{1} is applied at cage
7	3 m	3 m	m	m	-	-	-	$P_{1} ; P_{2}$	-	-	-	x_{1}	x_{2}	0	0	0	0	
8	m	$2 m$	$2 m$	$2 m$	2 m	-	-	-	-	f	-	x	ξ	0	0	0	$\dot{\xi}_{0}$	
9	m	$2 m$	$3 m$	-	-	-	-	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	0	0	Moment M_{1} is applied at cage
10	$2 m$	$2 m$	m	$2 m$	m	-	-	-	-	f	-	x	ξ	0	0	\dot{x}_{0}	0	
11	m	3 m	$2 m$	m	-	$4 r$	$r \sqrt{2}$	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	0	0	
12	$2 m$	5 m	m	-	-	-	-	P	-	f	-	x	ξ	0	ξ_{0}	0	0	
13	m	$3 m$	$2 m$	-	-	-	-	-	-	-	b	x	ξ	0	0	0	$\dot{\xi}_{0}$	Body 1 is a particle
14	$2 m$	m	m	$2 m$	-	-	-	-	M	-	-	φ	ξ	0	0	0	$\dot{\xi}_{0}$	
15	3 m	m	$2 m$	-	-	-	-	P	M	-	-	φ	x	0	0	0	0	Neglect mass of the belt

Continuation of the tab. 5

	Masses of bodies					Radii of gyration		$\begin{aligned} & Q \\ & 0 \\ & 0.0 \\ & 0.0 \\ & \text { H } \end{aligned}$	$\begin{aligned} & \Sigma \\ & \text { n } \\ & \dot{0} \\ & 0 \\ & \vdots \end{aligned}$	Coefficients of		Generalized coordinates		Initial conditions				Supplementary data
	1	2	3	4	5	$i_{2 y}$	$i_{3 y}$			$\begin{aligned} & .0 .0 \\ & \text { E } \\ & \hline \end{aligned}$	気 苟 $>$	q_{1}	q_{2}	q_{10}	q_{20}	\dot{q}_{10}	\dot{q}_{20}	
16	$2 m$	3 m	$2 m$	m	-	$2 r$	-	-	M	-	-	φ	x	0	0	0	\dot{x}_{0}	Moment M is applied at cage
17	m	$3 m$	-	-	-	-	-	P	-	0	b	x	ξ	0	ξ_{0}	0	0	Bodyl is a particle
18	$2 m$	$2 m$	m	m	3 m	-	-	-	M	f	-	x	ξ	0	0	0	0	
19	$2 m$	$2 m$	3 m	m	-	-	$r \sqrt{2}$	-	-	f	-	x	ξ	0	0	\dot{x}_{0}	0	
20	$2 m$	3 m	m	3 m	-	-	-	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	0	0	Moment M_{1} is applied at cage
21	$2 m$	$2 m$	3 m	$2 m$	m	-	$r \sqrt{2}$	-	-	-	-	x	ξ	0	0	\dot{x}_{0}	0	
22	m	3 m	2 m	m	-	-	-	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	0	0	The same
23	$2 m$	m	m	m	3 m	-	-		-	f	-	x	ξ	0	0	0	$\dot{\xi}_{0}$	
24	m	3 m	m	-	-	-	-	P	-	-	b	x	ξ	0	ξ_{0}	0	0	Bodyl is a particle
25	$2 m$	$2 m$	m	-	-	-	-	$P_{1} ; P_{2}$	-	f	-	x_{1}	x_{2}	0	0	0	0	
26	m	3 m	$2 m$	3 m	-	-	r	-	M	-	-	φ	ξ	0	0	0	$\dot{\xi}_{0}$	
27	$2 m$	2 m	3 m	m	$2 m$	$r \sqrt{2}$	$r \sqrt{3}$	-	M	-	-	φ	ξ	0	0	0	0	
28	m	3 m	m	-	-	-	-	P	-	-	-	x	ξ	0	0	0	$\dot{\xi}_{0}$	
29	$2 m$	4 m	m	m	-	-	-	P	-	f	-	x	ξ	0	0	\dot{x}_{0}	0	
30	$3 m$	$2 m$	$2 m$	-	-	-	-	-	$M_{1} ; M_{2}$	-	-	φ_{1}	φ_{2}	0	0	$\dot{\varphi}_{10}$	0	Moment M_{1} is applied at cage

REFERENCES

1. S. Targ. Theoretical Mechanics. A Short Course. - Moscow: Foreign Languages Publishing House, -421 p.
2. Яблонский А.А. и др. Сборник заданий для курсовых работ по теоретической механике. - М.: Высш. шк., 1978. - 240 с.
3. Тарг. С.М. Краткий курс теоретической механики. - М.: Наука, 1974. 400 c .
4. J. M. Krodkiewski. Dynamics of Mechanical Systems. - University of Melbourne, Department of Mechanical and Manufacturing Engineering, 2008. - 199 p.
5. J. H. Williams. Fundamentals of Applied Dynamics. - New York, Wiley, 1996
6. I. Percival, D. Richards, Introduction to Dynamics. - Cambridge University Press, 1982
7. J.L. Synge, B.A. Griffiths. Principles of Mechanics. - McGraw-Hill, New York, 1959
8. S. Neil Rasband. Dynamics. - New York, Wiley, 1983
9. E.T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. - Cambridge University Press, Cambridge UK, 1927

SUBJECT INDEX

Acceleration 11
of free fall 12
of gravity 12
of a particle 11,12
Amplitude of vibration 24, 29
Angular momentum 43, 45
Calculation of work 49
Centre
of gravity 33
of inertia 33
of mass 33
of oscillation 25
Circular frequency of vibrations 24
Conditions of equilibrium 98
Conservation of angular momentum 46
Conservative force 50
Constrained motion 13,53
Constraints, ideal 81
Curvilinear motion 17

D’Alembert's principle 78
Damped forced vibration 27
Damped vibration 25
period of 26
Damping decrement 27
Degrees of freedom 81
Displacement virtual 80
Disturbing force 27
Dynamical pressures 89
Dynamics 10
first law of 11
first problem of 12
fundamental law of 11
general equation of 83
general theorem of particle 38
general theorem of system 38
laws of 11
principal problem of 12
second law of 11
second problem of 12
third law of 12

Elastic force, work done by 50
Elementary impulse 39
Elementary work 48
Energy
kinetic 47
potential 98
Equation
general of dynamics 83
of motion of a system 37
of rotational motion 46,80
External forces 32

Fall free 12
Field uniform gravitational 17
First law of dynamics 11
First problem of dynamics 12
Fixed frame of reference 11
Fixed system 11
Force 10, 11
conservative 50
disturbing 27
elastic 50
external 32
gravity 12
inertia 78
internal 32
non-conservative 51
periodic 27
reaction $13,53,89$
restoring 23
variable 10
work done by 48
Forced vibrations 27
damped 27
steady-state 28
Frame of reference 11
fixed 11
inertial 11
Free fall 12
Free harmonic motion 23
Free vibrations 23
Frequency of vibrations 24

Frequency ratio 28
Fundamental law of dynamics 11
Generalized
accelerations 97
coordinates 96
forces 97
velocities 97
General equation of dynamics 83
General theorem of dynamics 38
Gravity work, done by 49
Harmonic motion 23
Ideal constraints 81

Impulse, elementary 39
Inertia 10
centre of 33
moment of 34
Inertial reference system 11, 12
Initial
conditions 15
displacement 16
velocity 16
Internal force 32
Kinematics 10
Kinetic energy 47
change in 53
Lagrangian dynamics 96
Lagrange's equations 100
Law
of action and reaction 12
of conservation of momentum 43
of dynamics, first 11
of dynamics, second 11
of dynamics, third 12
inertia 11
Laws of dynamics 11
Linear momentum 42
change in 42
conservation of 43
Logarithmic decrement 27
Mass 10, 11, 33
centre of 33
of a system 33
Material
body 11
point 10
Mechanical
interaction 32
system 32
Moment of angular momentum 44
Momentum
angular 45
change in 42
linear 38
moment of 43, 45
Motion
constrained 13, 53
curvilinear 17
equations of 14,37
free harmonic 23
inertia 11
law of 11,12
plane 47, 80
rectilinear 15
rotational 47, 80
simple harmonic 24
under no forces 11

Natural vibrations 28
Non-conservative force 51
Non-deformable system 54
Particle 10, 11
acceleration of 11, 12
freely falling 12
motion of 10,11
Period of vibration 24, 26
Periodic force 27
Phase 24
Plane motion 47, 80
Power 49
Principal problem of dynamics 12
Principle
of moments 44
of virtual work 82
Radius of gyration 34
Reaction
of constraints 13
of supports 13,53

Recoil 58
Rectilinear motion 14
Reference system 11
Resonance 29
Rest 11
Restoring force 23
Rigid body 54
Second law of dynamics 11
Second problem of dynamics 12, 13
Simple harmonic motion 24
Smooth constraints 81
Smooth surface 81
Spring 24
static elongation of 25
stiffness of 28
Static
deflection 63
elongation 25
Steady-state forced vibration 28
Stiffness of spring 30
Supports, reactions 13, 53
System of units 34, 40
Theorem
of the change in angular momentum 46
of the change in kinetic energy 52, 54
of the change in linear momentum 41,43
of the motion of center of mass 40
parallel-axis 36
Theoretical mechanics 10
Third law of dynamics 12
Time initial 16

Torque 51
Transient period 28
Translation 47
Turning moment 51
Uniform gravitational field 17
Unit system 34, 40
Variable force 10
Vibration 23
amplitude of 24, 29
angular frequency of 24
centre of 24
circular frequency of 24
damped 25, 26
forced 27, 28, 30
free 23
frequency of 24
natural 28
period of 24,26
phase of 24
steady state forced 28
damped forced 27
Virtual
displacement 80
work, principle 82
Weight 12
Work, done by 48
a conservative force 50
an elastic force 50
a force 48
a force of friction 51
gravity force 12

Долгов Олександр Михайлович

ТЕОРЕТИЧНА МЕХАНІКА ДИНАМІКА
 Навчальний посібник
 (Англійською мовою)

Друкується в редакційній обробці автора.

Підписано до друку 25.06.12. Формат 30x42/4.
Папір офсет. Ризографія. Ум. друк. арк. 8,1. Обл.-вид. арк. 8,1. Тираж 100 пр. Зам. №

Підготовлено до друку та видрукувано
у Державному вищому навчальному закладі «Національний гірничий університет».
Свідоцтво про внесення до Державного реєстру ДК № 1842 від 11.06.2004.
49005, Дніпропетровськ, просп. К. Маркса, 19

